[404] Not Found - {“error“:“model \“mxbai-embed-large\“ not found, try pulling it first“}

1. 本地虚拟机配置rag,出现如上错误, 一开始比较蒙,因为已经run起来了deepseek-r1:7b模型,但是启动报错,说模型mxbai-embed-large找不到,搜索了下明白问题,原来是将文本进行向量化的一个模型,ollama下载run即可解决报错

2. ollama官网查找命令:

    ollama pull mxbai-embed-large

3. 虚拟机 pull下来,run即可

4. 如图:

5. 注意向量化的维度数,1536,1024。每个都不一样,我使用的向量数据库是milvus,创建Collection时候,需要注意维度数,需要同模型的维度数统一,这个mxbai-embed-large是1024的。

<think>好的,我现在需要解决用户提到的'nomic-embed-text:latest'不支持generate方法的问题。首先,我得理解用户的问题背景。用户可能在尝试使用Ollama或相关工具调用nomic-embed-text模型的generate方法时遇到了错误,提示该方法不被支持。 接下来,我需要回忆一下nomic-embed-text模型的特点。这个模型主要用于生成文本嵌入(embeddings),而生成文本的任务通常由生成式模型(如GPT系列)处理。因此,用户可能混淆了模型的类型,误将嵌入模型当作生成模型来使用,导致调用generate方法时报错。 然后,我应该验证这个猜测是否正确。查阅Nomic AI的官方文档或GitHub仓库,确认nomic-embed-text-v1是否确实只提供嵌入功能,而没有文本生成的能力。根据引用[1]中的项目地址,查看代码示例或API文档,发现该模型可能只有创建嵌入的方法,而没有generate方法。 接下来,思考解决方案。用户需要明确他们的需求:如果需要生成文本,应该换用支持生成方法的模型,比如LLaMA、Mistral等。如果确实需要使用nomic-embed-text来获取嵌入,那么需要调整代码,正确调用其嵌入方法,比如embed或类似的方法。 此外,用户可能需要更新模型版本或检查安装步骤是否正确。引用[2]中提到,如果模型未找到,需要执行拉取命令。因此,用户可能需要先确保模型正确下载和安装,避免因版本问题导致的方法不支持。 最后,总结步骤:确认模型用途,更换模型或调整方法调用,检查模型安装。同时,提供示例代码帮助用户正确使用嵌入模型,并推荐相关模型供生成任务使用。</think>关于“nomic-embed-text:latest”不支持`generate`方法的解决方案: ### 问题分析 1. **模型功能定位** `nomic-embed-text`是Nomic AI开发的**文本嵌入模型**,专门用于生成文本的向量表示(embeddings),而非文本生成[^1]。其核心接口应为`embed`或`encode`方法,而非生成式模型的`generate`方法。 2. **方法调用错误** 当使用类似Ollama的框架时,若误将嵌入模型当作生成模型调用(如`generate()`),会触发接口不支持的报错。 --- ### 逐步解决方案 #### 方案一:改用嵌入接口 **适用场景**:仅需获取文本的向量表示 ```python from nomic import embed # 正确调用嵌入方法 embeddings = embed.text( texts=["样例文本"], model="nomic-embed-text-v1" ) print(embeddings.shape) # 输出向量维度 ``` #### 方案二:切换生成模型 **适用场景**:需要文本生成功能(如问答、续写) 推荐使用支持`generate`方法的模型: - `llama3` - `mistral` - `phi3` 通过Ollama调用示例: ```bash # 拉取生成模型 ollama pull llama3 ``` ```python # 调用生成接口 response = ollama.generate(model='llama3', prompt='你好') print(response['response']) ``` #### 方案三:验证模型安装 若出现`model not found`错误[^2],执行: ```bash # 确保已正确拉取模型 ollama pull nomic-embed-text:latest ``` --- ### 关键区别说明 | 模型类型 | 典型方法 | 输出示例 | |----------------|----------------|------------------------| | 嵌入模型 | `embed()` | 768维浮点数向量 | | 生成模型 | `generate()` | 文本序列 | ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值