Wu deeplearning.ai C1W3 assignment3

这篇博客介绍了构建一个具有单隐藏层的神经网络的过程,用于平面数据分类。作者详细阐述了作业中遇到的数据维度问题、模型构建步骤以及损失函数的计算。通过解决数据预处理的坑点,成功实现模型并得到测试结果。
摘要由CSDN通过智能技术生成

Planar data classification with one hidden layer

Welcome to your week 3 programming assignment. It's time to build your first neural network, which will have a hidden layer. You will see a big difference between this model and the one you implemented using logistic regression. 

You will learn how to:

  • Implement a 2-class classification neural network with a single hidden layer
  • Use units with a non-linear activation function, such as tanh 
  • Compute the cross entropy loss 
  • Implement forward and backward propagation

这次主要是构建一个one hidden layer的简单神经网络,并且完成数据分类的工作,下面分成几点来进行说明。

1)本次作业的坑点以及修改调试过程(是十分的坑啊)

2)模型的构建过程

3)测试结果

1.作业的坑点

从数据的导入开始说起,导入必要的packages

# Package imports
import numpy as np
import matplotlib.pyplot as plt
from testCases import *
import sklearn
import sklearn.datasets
import sklearn.linear_model
from planar_utils import plot_decision_boundary, sigmoid, load_planar_dataset, load_extra_datasets

%matplotlib inline

np.random.seed(1) # set a seed so that the results are consistent

#load date-set
X, Y = load_planar_dataset() 

#visualize the date
plt.scatter(X[0, :], X[1, :], c=np.squeeze(Y), s=40, cmap=plt.cm.Spectral);


这边在原来给的代码中,为了可视化我们的数据集,调用了plt.scatter。原来吴恩达给的代码是c = Y,如果直接运行的话会出现如下错误 

 因为一开始我们Y的维度是(1,400)而在使用绘图函数的时候,需要进行降维度处理,去除冗余的维度。通常算法的结果是可以表示

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值