基于PCL的三维重建——点云配准(二)SAC-IA+ICP算法的实践

本文介绍了使用PCL库进行三维重建的过程,通过SAC-IA初步配准和ICP算法进一步精细化配准,实验数据源于深度相机。内容包括NAN点剔除、滤波处理、表面法线计算、FPFH特征提取以及两种配准算法的应用。
摘要由CSDN通过智能技术生成

此次尝试了用SAC-IA的粗配准加上ICP算法的精细配准,实验的数据是我们自已用深度相机采集的。

过程中进行了去除NAN点,下采用滤波,计算表面法线,计算FPFH,SAC-IA配准,ICP配准。

#include <pcl/registration/ia_ransac.h>
#include <pcl/point_types.h>
#include <pcl/point_cloud.h>
#include <pcl/features/normal_3d.h>
#include <pcl/features/fpfh.h>
#include <pcl/search/kdtree.h>
#include <pcl/io/pcd_io.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/filters/filter.h>
#include <pcl/registration/icp.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <time.h>

using pcl::NormalEstimation;
using pcl::search::KdTree;
typedef pcl::PointXYZ PointT;
typedef pcl::PointCloud<PointT> PointCloud;

//点云可视化
void visualize_pcd(PointCloud::Ptr pcd_src,
	PointCloud::Ptr pcd_tgt,
	PointCloud::Ptr pcd_final)
{
	//int vp_1, vp_2;
	// Create a PCLVisualizer object
	pcl::visualization::PCLVisualizer viewer("registration Viewer");
	//viewer.createViewPort (0.0, 0, 0.5, 1.0, vp_1);
	// viewer.createViewPort (0.5, 0, 1.0, 1.0, vp_2);
	pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> src_h(pcd_src, 0, 255, 0);
	pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> tgt_h(pcd_tgt, 255, 0, 0);
	pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> final_h(pcd_final, 0, 0, 255);
	viewer.addPointCloud(pcd_src, src_h, "source cloud");
	viewer.addPointCloud(pcd_tgt, tgt_h, "tgt cloud");
	viewer.addPointCloud(pcd_final, final_h, "final cloud");
	//viewer.addCoordinateSystem(1.0);
	while (!viewer.wasStopped())
	{
		viewer.spinOnce(100);
		boost::this_thread::sleep(boost::posix_time::microseconds(100000));
	}
}

//由旋转平移矩阵计
PCL (Point Cloud Library) 中的 SAC-IA (Sample Consensus Initial Alignment) 和 ICP (Iterative Closest Point) 都是点云配准中常用的算法,结合使用可以实现更准确的配准结果。 SAC-IA 是一种采样一致性算法,可以快速地计算出两个点云之间的初步变换矩阵。ICP 算法则是一种迭代优化算法,可以在初步变换矩阵的基础上进一步优化获取更精确的变换矩阵。 下面是使用 PCL 进行 SAC-IA+ICP 配准的示例代码: ```cpp pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_source (new pcl::PointCloud<pcl::PointXYZ>); pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_target (new pcl::PointCloud<pcl::PointXYZ>); pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_source_aligned (new pcl::PointCloud<pcl::PointXYZ>); // 加载源点云和目标点云 pcl::io::loadPCDFile<pcl::PointXYZ> ("source_cloud.pcd", *cloud_source); pcl::io::loadPCDFile<pcl::PointXYZ> ("target_cloud.pcd", *cloud_target); // 创建 SAC-IA 对象 pcl::SampleConsensusInitialAlignment<pcl::PointXYZ, pcl::PointXYZ, pcl::FPFHSignature33> sac_ia; sac_ia.setInputCloud (cloud_source); sac_ia.setSourceFeatures (source_features); sac_ia.setInputTarget (cloud_target); sac_ia.setTargetFeatures (target_features); sac_ia.setMinSampleDistance (0.05f); sac_ia.setMaxCorrespondenceDistance (0.1); sac_ia.setMaximumIterations (500); // 计算初步变换矩阵 pcl::PointCloud<pcl::PointXYZ>::Ptr sac_aligned (new pcl::PointCloud<pcl::PointXYZ>); sac_ia.align (*sac_aligned); // 创建 ICP 对象 pcl::IterativeClosestPoint<pcl::PointXYZ, pcl::PointXYZ> icp; icp.setInputSource (sac_aligned); icp.setInputTarget (cloud_target); icp.setMaxCorrespondenceDistance (0.05); icp.setMaximumIterations (100); // 优化变换矩阵 icp.align (*cloud_source_aligned); // 输出配准结果 std::cout << "SAC-IA+ICP has converged:" << icp.hasConverged () << " score: " << icp.getFitnessScore () << std::endl; // 保存配准后的点云 pcl::io::savePCDFile ("aligned_cloud.pcd", *cloud_source_aligned); ``` 在上述代码中,我们首先加载了源点云和目标点云。然后创建了 SAC-IA 对象,设置了输入点云、特征、最小采样距离、最大对应距离和最大迭代次数,然后调用 `align()` 函数计算初步变换矩阵。接着创建了 ICP 对象,设置了输入源点云和目标点云,最大对应距离和最大迭代次数,然后调用 `align()` 函数优化变换矩阵。最后输出配准结果并保存配准后的点云。
评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值