Semantic Segmentation with Deep Learning
From FCN to Dilated Convolution
Fcn-Fully Convolutional Networks for Semantic Segmentation
Key Contributions:
- 采用了end-to-end,pixels-to-pixels的全卷积网络(用卷积层代替原来的全连接层)
- 可以输入任意尺寸,并且输出等同输入尺寸的大小
- 反卷积层上采样(增大特征图尺寸,输出精确的结果)
- 利用跳跃链接改善上采样粗糙像素定位
Paper Details:
从整体结构上来看,FCN将全连接层去掉,采用反卷积层来代替,如下图1.1,图1.2
Figure 1.1
Figure 1.2
由图1.2可见,前五层都是卷积层,到了第6,7这两层,原来的卷积神经网络都是采用全连接,都是4096的一维向量。而现在改为卷积层变成了(4096,1,1)然后论文后续利用卷积层进行反卷积操作,也可以称为上采样操作。
此外,为了改善上采样的效果,此论文采用了一种跳跃连接的方式,如图1.3
Figure 1.3
对原图进行卷积conv1,pool1图像缩小到1/2,...,到conv5,pool5,图像已经缩小到原来的1/32,在此过程中保留了pool3,pool4,pool5的feturemap&