【语义分割】常用模型架构浅读

本文介绍了语义分割的几种关键模型,包括FCN的全卷积网络结构、SegNet的编码-解码架构以及Dilated Convolution在捕获多尺度上下文信息中的作用。FCN使用反卷积实现像素级预测,SegNet利用Pooling indices改进上采样,而Dilated Convolution通过扩大感受野提供更丰富的上下文信息。
摘要由CSDN通过智能技术生成

                Semantic Segmentation with Deep Learning

From FCN to Dilated Convolution

Fcn-Fully Convolutional Networks for Semantic Segmentation

Key Contributions:

  1. 采用了end-to-end,pixels-to-pixels的全卷积网络(用卷积层代替原来的全连接层)
  2. 可以输入任意尺寸,并且输出等同输入尺寸的大小
  3. 反卷积层上采样(增大特征图尺寸,输出精确的结果) 
  4. 利用跳跃链接改善上采样粗糙像素定位

Paper Details: 

从整体结构上来看,FCN将全连接层去掉,采用反卷积层来代替,如下图1.1,图1.2
 

                                                                         Figure 1.1

                                                                          Figure 1.2

由图1.2可见,前五层都是卷积层,到了第6,7这两层,原来的卷积神经网络都是采用全连接,都是4096的一维向量。而现在改为卷积层变成了(4096,1,1)然后论文后续利用卷积层进行反卷积操作,也可以称为上采样操作。 
此外,为了改善上采样的效果,此论文采用了一种跳跃连接的方式,如图1.3

                                                                           Figure 1.3

对原图进行卷积conv1,pool1图像缩小到1/2,...,到conv5,pool5,图像已经缩小到原来的1/32,在此过程中保留了pool3,pool4,pool5的feturemap&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值