统计学习方法
文章平均质量分 51
王小希ww
翻万卷书,游万里路;
学会提问,系统深入;
思考方式远比记住结论重要;
技术是帮人省时间,而不是浪费别人的时间;
胆大心细,脸皮要厚;
礼仪是让别人方便,不是让自己方便;
心态若改变,态度跟着改变;
态度改变,习惯跟着改变;
习惯改变,性格跟着改变;
性格改变,人生就跟着改变;
未来目标:学会爱自己(健身,早睡早起好习惯),学会生活(保持激情,学会精力管理),学会提升自己(抓住能够锻炼自己的一切机会,坚持看书)
展开
-
关于相似度计算方法的python实现
关于相似度计算方法的python实现参考各种相似度计算的python实现[KNN]基于numpy的曼哈顿距离实现余弦距离介绍欧氏距离,曼哈顿距离:计算两个向量间的相似程度,值越小,相似度越高高斯距离(标准化欧氏距离):计算两个向量间的相似程度,值越大,相似度越高余弦相似度:取值范围是[-1,1],相同两个向量的之间的相似度为cos(0°)=1,方向上正相关;cos(180°) = -1,方向上负相关。**pearson系数:**用于研究不同变量(n个变量)两两间的相关程度,相关性矩阵(原创 2022-03-11 14:29:13 · 4725 阅读 · 0 评论 -
第五章、决策树
决策树零、预备知识1、数学期望2、熵 & 条件熵 见 三.23、信息增益 & 信息增益比 见 三.4 & 三.54、基尼指数 见 三.75、回归树 & 分类树 见 六.16、KL散度和信息增益一、基本概念决策树(decision tree)是一种基本的分类与回归方法。决策树可以认为是if-then规则的集合;也可以认为是定义在特征空间与类空间上的条件概率分布。学习时,利用训练数据,根据损失函数最小化的原则建立决策树模型。预测时,对新的原创 2020-08-17 11:13:52 · 922 阅读 · 0 评论 -
第三章、K近邻法(KNN)
K近邻法(KNN)文章目录K近邻法(KNN)零、预备知识1、方差2、标准差3、正态分布4、备注1)区别欧氏距离和标准差:2)为什么样本标准差时要除以n−1n-1n−1而不是nnn一、KNN基本概念1、基本概念2、KNN优缺点3、备注二、KNN模型1、距离度量2、K值的选择3、分类决策规则4、备注三、KNN的实现方法 - kd树1、kd树概念2、kd树构造算法1)算法A:最大方差B:顺序选取2)kd树的构造3、kd树最近邻搜索算法1)搜索过程2)备注4、kd树的删除四、问题五、参考文档零、预备知识1、方原创 2020-07-26 14:06:13 · 370 阅读 · 0 评论 -
第二章、感知机
第二章、感知机文章目录第二章、感知机1、预备知识1.1 线性可分 & 线性不可分1.2 内积(数量积,点积)1.3 方向导数 & 梯度 & 梯度下降1)方向导数2)梯度3)梯度下降1.4 点到直线(平面)的距离1.5 Gram矩阵1.6 补充知识点1)线性 & 非线性,齐次 & 非齐次2)线性变换2、感知机模型2.1 感知机基本概念2.2 感知机定义2.3 数据集 & 线性可分性2.4 补充1)为什么w是超平面的法向量?2)区别感知机模型和超平面S?3)为原创 2020-07-15 13:08:20 · 483 阅读 · 0 评论 -
第一章、统计学习方法概论
第一章、统计学习方法概论1、统计学习的特点计算机基于数据构建模型,并运用模型对数据进行预测和分析。其中研究对象是数据,研究的目的是对未知的数据进行预测。统计学习建立在一个基本假设上:同类数据具有一定的统计规律性。统计规律:对大量偶然事件整体起作用的规律,表现这些事物整体的本质和必然的联系。https://baike.baidu.com/item/统计规律/894528?fr=aladdin统计学习是概率论、统计学、信息论、计算理论、最优化理论、计算机科学等多个领域的交叉学科。2、统计学原创 2020-07-15 11:56:42 · 505 阅读 · 0 评论