leetcode
文章平均质量分 95
积累leetcode上一些有趣的题
王小希ww
翻万卷书,游万里路;
学会提问,系统深入;
思考方式远比记住结论重要;
技术是帮人省时间,而不是浪费别人的时间;
胆大心细,脸皮要厚;
礼仪是让别人方便,不是让自己方便;
心态若改变,态度跟着改变;
态度改变,习惯跟着改变;
习惯改变,性格跟着改变;
性格改变,人生就跟着改变;
未来目标:学会爱自己(健身,早睡早起好习惯),学会生活(保持激情,学会精力管理),学会提升自己(抓住能够锻炼自己的一切机会,坚持看书)
展开
-
算法题整理(蓝桥 & leetcode)(待更新)
算法题整理(蓝桥 & leetcode)(待更新)原创 2022-06-27 20:09:25 · 2548 阅读 · 0 评论 -
5.最长回文子串
5.最长回文子串文章目录5.最长回文子串一、题目描述二、方法1:动态规划三、总结5. 最长回文子串一、题目描述示例 1:输入: "babad"输出: "bab"注意: "aba" 也是一个有效答案。示例 2:输入: "cbbd"输出: "bb"二、方法1:动态规划分析1: 一开始我的思路是这样的:将字符串s反转成s1,然后对s和s1进行最长公共子串的匹配。匹配的方法和昨天的1143.最长公共子序列一样:如果s1[j] != s[i],选择三个方向的最大值如果s1[j]原创 2020-05-08 19:49:18 · 192 阅读 · 0 评论 -
1143.最长公共子序列
1143.最长公共子串文章目录1143.最长公共子串一、题目描述二、方法一:暴力法三、方法二、动态规划四、补充:打印输出最长公共子串五:心得体会1143. 最长公共子序列一、题目描述示例 1:输入:text1 = "abcde", text2 = "ace" 输出:3解释:最长公共子序列是 "ace",它的长度为 3。示例 2:输入:text1 = "abc", text2 ...原创 2020-05-07 16:47:27 · 382 阅读 · 0 评论 -
53. 最大子序和(待跟进)
53. 最大子序和文章目录53. 最大子序和一、题目描述二、方法1:循环遍历(O(N^2))三、方法2:贪心?动态规划(O(N))核心思路边界分析四、方法3:分治法(O(N))待研究五、心得体会一、题目描述53. 最大子序和输入: [-2,1,-3,4,-1,2,1,-5,4],输出: 6解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。二、方法1:循环遍历(O(N^2)...原创 2020-05-04 13:50:45 · 179 阅读 · 0 评论 -
VSCode配置基于java + LeetCode环境
VSCode配置基于java + LeetCode环境文章目录VSCode配置基于java + LeetCode环境一、VSCode安装二、VSCode配置java环境1、VSCode汉化 & 颜色主题2、配置VSCode的java基础环境3、安装java扩展插件4、运行一波6、备注:三、VSCode配置LeetCode环境1、安装leetcode插件2、登录帐号3、开始答题一、VSC...原创 2020-05-04 09:16:31 · 3680 阅读 · 2 评论 -
Leetcode刷题记录(同步更新)
Leetcode刷题记录(同步更新)文章目录Leetcode刷题记录(同步更新)一、前期必备1、数据结构2、算法3、刻意练习4、反馈5、刷题要求二、按题型整理1、数学,几何2、线性表:数组与链表3、字符串4、栈与队列5、树6、图7、搜索8、动态规划三、按日期整理2019-122020-12020-32020-5一、前期必备1、数据结构一维:基础:数组 array (string), 链...原创 2020-05-03 12:48:13 · 777 阅读 · 0 评论 -
892.三维形体的表面积 (2020.3.25)
892.三维形体的表面积 (2020.3.25)一、题目描述原题地址在 N * N 的网格上,我们放置一些 1 * 1 * 1 的立方体。每个值 v = grid[i][j] 表示 v 个正方体叠放在对应单元格 (i, j) 上。请你返回最终形体的表面积。这里参照某位网友画的图示例 1:输入:[[2]]输出:10示例 2:输入:[[1,2],[3,4]]输出:34...原创 2020-03-26 00:18:09 · 262 阅读 · 0 评论 -
836. 矩形重叠(2020.3.18)
每日一题目录每日一题@[TOC](目录)1、题目描述:2、思路分析3、更优办法1、题目描述:836. 矩形重叠难度简单87收藏分享切换为英文关注反馈矩形以列表 [x1, y1, x2, y2] 的形式表示,其中 (x1, y1) 为左下角的坐标,(x2, y2) 是右上角的坐标。如果相交的面积为正,则称两矩形重叠。需要明确的是,只在角或边接触的两个矩形不构成重叠。给出两个矩形,判断...原创 2020-03-18 16:35:04 · 215 阅读 · 0 评论