计算机视觉
文章平均质量分 82
主要包括Yolov5,mobileNet等常见CV模型
王小希ww
翻万卷书,游万里路;
学会提问,系统深入;
思考方式远比记住结论重要;
技术是帮人省时间,而不是浪费别人的时间;
胆大心细,脸皮要厚;
礼仪是让别人方便,不是让自己方便;
心态若改变,态度跟着改变;
态度改变,习惯跟着改变;
习惯改变,性格跟着改变;
性格改变,人生就跟着改变;
未来目标:学会爱自己(健身,早睡早起好习惯),学会生活(保持激情,学会精力管理),学会提升自己(抓住能够锻炼自己的一切机会,坚持看书)
展开
-
Python flask 视频流返回问题 & RTSP断流问题解决
Python flask 视频流返回问题 & RTSP断流问题解决原创 2022-10-17 11:51:26 · 2766 阅读 · 0 评论 -
OpenGL基础教程
OpenGL基础教程原创 2022-09-26 01:11:37 · 11049 阅读 · 3 评论 -
OpenGL入门教程
OpenGL入门教程原创 2022-09-26 01:00:47 · 4779 阅读 · 0 评论 -
【自动驾驶】浅谈自动驾驶在业界的发展
【自动驾驶】浅谈自动驾驶在业界的发展原创 2022-07-26 22:31:30 · 1668 阅读 · 0 评论 -
【自动驾驶】自动驾驶和手动驾驶的平滑切换控制方案探讨
【自动驾驶】自动驾驶和手动驾驶的平滑切换控制方案探讨原创 2022-07-17 16:32:24 · 1917 阅读 · 5 评论 -
【自动驾驶】高级辅助驾驶系统与车联网
【自动驾驶】高级辅助驾驶系统与车联网原创 2022-07-15 19:49:22 · 3018 阅读 · 0 评论 -
【自动驾驶】好文收藏(待更新)
【自动驾驶】好文收藏原创 2022-07-15 12:51:40 · 273 阅读 · 0 评论 -
YoloV5模型的简单使用
Yolov5模型的简单使用原创 2022-06-13 01:55:47 · 6184 阅读 · 1 评论 -
【自动驾驶】基于面部Fatigue检测的技术报告
基于面部Fatigue检测的技术报告文章目录基于面部Fatigue检测的技术报告关于疲劳驾驶检测研究主要有哪几个方向基于面部的疲劳检测研究的发展现状共搜集43篇论文按年份和科研单位及刊物级别进行分析按年份和使用的模型进行分析按年份和数据集进行分析按年份和针对的问题来分析计算机视觉研究热点趋势分析我觉得比较水的疲劳检测论文无外乎这几点疲劳检测的解决方案研究(科学性研究)最近这3年的疲劳检测发展现状基于面部的疲劳检测研究,可以上升到了一个哲学问题我们不禁停下来思考,疲劳究竟是什么?科学有意义的疲劳检测研究应该原创 2022-05-08 12:36:45 · 4145 阅读 · 7 评论 -
onnx效率问题:和Module & DataParallel比较
onnx效率问题:和Module & DataParallel比较文章目录onnx效率问题:和Module & DataParallel比较1、实验1 - 人脸定位 + 人脸关键点检测1)使用Module加载mbv2模型(Bad)2)使用DataParallel加载mbv2模型(Perfect)3)使用onnx加载mbv2模型(Good)4)疑惑2、实验2 - 人脸定位 + 人脸关键点 + 皱眉检测1)使用Module加载mbv3_small模型(Well)2)使用DataParallel原创 2022-04-21 16:34:11 · 1586 阅读 · 0 评论 -
onnx标准 & onnxRuntime加速推理引擎
onnx标准 & onnxRuntime加速推理引擎文章目录onnx标准 & onnxRuntime加速推理引擎一、onnx简介二、pytorch转onnx三、tf1.0 / tf2.0 ckpt转onnx四、python onnx的使用1、环境安装2、获得onnx模型权重参数(可视化)3、onnx模型推理参考博客:ONNX运行时:跨平台、高性能ML推断和训练加速器python关于onnx模型的一些基本操作ONNX 與 Azure Machine Learning:建立並加速 M原创 2022-04-12 02:36:18 · 14124 阅读 · 7 评论 -
锚框、交并比和非极大值抑制(tf2.0源码解析)
锚框、交并比和非极大值抑制(tf2.0源码解析)文章目录锚框、交并比和非极大值抑制(tf2.0源码解析)一、锚框生成1、锚框的宽高2、锚框的个数3、注意点(★★★)4、tf2.0代码二、交并比1、Jaccard相似度2、交并比矩阵3、标注锚框4、注意点(★★★)5、tf2.0代码1)交并比2)绘制真实框和锚框3)交并比矩阵4)计算偏移量三、非极大值抑制1、NMS原理2、注意点(★★★)3、tf2.0代码1)NMS控制台输出2)NMS锚框绘制参考计算机视觉 – 4 锚框9.4 锚框Note:如果原创 2022-04-05 23:50:39 · 781 阅读 · 0 评论 -
将tensorflow 1.x & 2.x转化成onnx文件(以arcface-tf2人脸识别模型为例)
将tensorflow 1.x & 2.x转化成onnx文件文章目录将tensorflow 1.x & 2.x转化成onnx文件一、tensorflow 1.x转化成onnx文件1、ckpt文件生成2、打印权重参数名称3、ckpt文件转pb4、ckpt文件转onnx(--checkpoint)二、tensorflow 2.x转化成onnx文件1、ckpt转savemodel(pb)1)错误用法(不能冻结权重生成pb)2)正确用法(saved_model)2、pb转onnx3、小总结(★★★原创 2022-03-28 17:33:11 · 6999 阅读 · 5 评论 -
ONNX ONNXRuntime 以及使用 cv2.dnn.readNet加载onnx模型
模型部署之 ONNX ONNXRuntime转载至模型部署之 ONNX ONNXRuntime原创 2022-03-26 12:49:38 · 5820 阅读 · 0 评论 -
Pytorch中的学习率衰减及其用法
Pytorch中的学习率衰减及其用法文章目录Pytorch中的学习率衰减及其用法使用库函数进行调整:1、有序调整1)等间隔调整学习率 StepLR2)多间隔调整学习率 MultiStepLR3)指数衰减调整学习率 ExponentialLR4)余弦退火函数调整学习率2、自适应调整5)根据指标调整学习率 ReduceLROnPlateau3、自定义调整学习率6)不同参数组设定不同学习率 LambdaLR手动调整学习率在使用MobileNetV3 + arcFace loss训练模型时,发现accurac转载 2022-03-23 12:13:24 · 428 阅读 · 0 评论 -
Python+OpenCv实现图像边缘检测(滑动调节阈值)
Python+OpenCv实现图像边缘检测(滑动调节阈值)Python+OpenCv实现图像边缘检测(滑动调节阈值)转载 2022-03-21 23:24:35 · 247 阅读 · 0 评论 -
【Pytorch】常见的人脸身份识别损失函数
Pytorch常见损失函数实验环境准备:人脸多角度多光照的图像数据集MUCT(276个受试者)+ MobileNetV3文章目录Pytorch常见损失函数0、Softmax(激活函数)1、NLLLoss(负对数似然损失)1)源码解析2)实验2、CrossEntropyLoss(损失函数)1)源码解析2)实验3、Center loss(损失函数 - 2016)1)源码解析2)实验4、L2-Softmax(损失约束 - 2017 特征归一化)1)源码2)实验5、SphereFace loss(损失约束 -原创 2022-03-16 22:53:19 · 2089 阅读 · 0 评论 -
pytorch 常见问题(待更新)
pytorch 常见问题(待更新)文章目录pytorch 常见问题(待更新)1、nn.Module 和 nn.functional 的区别2、load_state_dict() 源码解析1、nn.Module 和 nn.functional 的区别参考 Python深度学习:基于PyTorchnn中的层,一类是继承了nn.Module,其命名一般为nn.Xxx(第一个是大写),如nn.Linear、nn.Conv2d、nn.CrossEntropyLoss等。另一类是 nn.functional中的原创 2022-03-14 16:27:07 · 2145 阅读 · 0 评论 -
Pytorch核心基础
Pytorch核心基础文章目录Pytorch核心基础一、自定义数据集类(★★★)1、使用`torchvision`内置数据集类1)CIFAR102)MNIST2、继承torch.utils.data.Dataset自定义数据类1)自定义图像数据集类("PIL image / opencv")2)自定义信号数据集类("df")3、小总结(“init数组,getitem格式转换”)4、运行报错汇总(”积少成多“)二、自定义神经网络(★★★★)1、继承`nn.Module`构建网络(”重写init,实现forw原创 2022-03-09 22:42:43 · 1317 阅读 · 0 评论 -
机器学习好文章收藏(待更新)
机器学习好文章收藏(待更新)文章目录机器学习好文章收藏(待更新)1、激活函数1、激活函数激活函数(Relu,Swish,Maxout)原创 2022-03-08 12:55:19 · 731 阅读 · 0 评论 -
如何租用AutoDL显卡进行模型训练(不支持K8s部署)
如何租用AutoDL显卡跑项目使用步骤1、租用新实例 参考AutoDL-GPU租用平台使用教程,AutoDL快速开始2、安装个人版XShell 7 + xftp7,注意要先下XShell,再下载xftp,否则xftp下载时会报-1603致命错误。参考XShell安装3、使用XShell连接服务器,使用xftp上传代码到/root/auto-tmp下,因为根目录是系统盘(20G),auto-tmp为挂载盘(100G)4、创建并激活虚拟环境:(不建议直接在root下装环境)cond原创 2022-03-06 13:08:37 · 7844 阅读 · 8 评论 -
免费使用Colab运算资源
白嫖Colab运算资源一、Colab挂载云盘代码并运行模型参考使用colab运行深度学习gpu应用(Mask R-CNN)实践Colab在界面设计上虽然和阿里云天池实验室差不多,但是Google的生态圈实在太大了,在Google云盘中可以用Colab打开代码,大大提高开发者的工作效率。先在Colab上点击修改 >> 笔记本设置 >> GPU,可以白嫖一台GPU先将代码上传到Google云盘上(这一步最耗时,在colab使用之前先做,不会占用GPU资源),接着将云盘上原创 2022-03-05 01:28:38 · 2134 阅读 · 0 评论 -
CV待研究
CV待研究Fast R-CNN中的ROI Pooling层详解原创 2020-11-04 15:33:14 · 220 阅读 · 0 评论 -
HOG特征
今天在学习AdaBoost算法中,第一次接触到HOG特征,Harr特征,发现这篇博客写得不错,对了HOG特征有了一定的了解HOG特征转载 2020-09-14 21:12:54 · 85 阅读 · 0 评论