利用python进行数据分析——笔记

 

目录

第4章 Numpy基础

第5章 Pandas入门


第4章 Numpy基础

数组运算:大小相等的数组间、数组和标量间的算术运算都会将运算应用到各个元素。

数组的比较运算会产生bool型数组。示例:

  • 数组切片:

arr[5:8]是从下标5 到下标7

将一个标量值赋给一个切片时,该值会自动传播到整个选区。

数组切片与列表不同,数组切片时原始数组的视图,修改会直接反映到源数组上。

如果想得到ndarray切片的副本,则需要 arr[5:8].copy()

 

  • N维数组:

N维数组 递归访问:arr2d[0][2]       索引访问:arr2d[0,2]

N维数组可多轴切片。 arr2d[:2,1:]

N维的 整数索引 切片 混合, 示例:arr2d[1,:2]。

仅有:(冒号)时表示选取整个轴

 

  • 花式索引:向数组[]内传入一个用于指定顺序的整数列表或ndarray 

如arr为5*4数组,

arr=[[0,0,0,0],

[1,1,1,1],

[2,2,2,2],

[3,3,3,3],

[4,4,4,4] ]

则 arr[[4,3,0,1]] 为:

[[4,4,4,4],

[3,3,3,3],

[0,0,0,0],

[1,1,1,1]] 

 

  • arr.T #转置

np.dot(arr.T,arr) # 计算矩阵内积 

矩阵乘法:dot函数   x.dot(y) # 相当于np.dot(x,y) 

通用函数:对ndarray中的数据执行元素级运算; 如sqrt、exp(这些是一元),maximum、add、multiply(这些是二元,可以接受两个数组,并返回一个结果数组)。

 

  • where

arr3=np.where(条件,arr1,arr2)  # 满足条件则arr3[i]为arr1,否则为arr2;    arr1、arr2也可以是标量;

arr=np.where(arr>0,2,arr) # 只将正值设置为2 。

 

  • 布尔型数组

bools.any() # 数组中是否存在>=1个True

bools.all() # 数组中是否所有值都是True

 

  • 排序

arr.sort[ ]

只在一个轴上排序 arr.sort[1]

 

  • np.unique # 找到一维ndarray中的唯一值并返回已排序的结果

np.uniques(ages) 等同于sorted(set(names))


第5章 Pandas入门

  • drop方法:删除指定行或列(许多方法,如drop可以就地修改对象,但不会返回新的对象)

  • sort_index 方法:对行索引或列索引进行排序

  • 对DataFrame进行索引就是获取一个或多个列,如 data['country'] 为获取country这一列;

但有几个特殊情况:data[:2]是对DataFrame切片,选取的是行。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值