剑指Offer之寻找数据流中的中位数【包含大顶堆小顶堆解释】

题目描述

如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值。如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值。我们使用Insert()方法读取数据流,使用GetMedian()方法获取当前读取数据的中位数。

题解

解题思路—直接插入:使用ArrayList,每次输入数据时,使用直接插入的思想,将数据按顺序插入list中。

但是对于海量数据而言,直接插入法效率太低,所以推荐使用大顶堆小顶堆来解这道题,将数据尽量平均的存入大顶堆和小顶堆中,堆顶即为中位数。

规定:0<=小顶堆数据个数-大顶堆数据个数<=1
// minheap:小顶堆;maxheap:大顶堆。
// top_minheap:小顶堆的堆顶元素;top_maxheap:大顶堆的堆顶元素。

1.当堆中数据总数为奇数时(小顶堆个数比大顶堆多一个)
当num<=top_minheap,将insert的数据num直接放入大顶堆;
当num>top_minheap,先将top_minheap加入maxheap,再将num加入minheap中。
此时,堆中数据个数变为偶数,中位数输出:(top_minheap+top_maxheap)/2

2.当堆中数据总数为偶数时(小顶堆大顶堆个数一致)
当num>=top_maxheap,将insert的数据num直接放入小顶堆;
当num<top_maxheap,先将top_maxheap加入minheap,再将num加入maxheap中。
此时,堆中数据个数变为奇数,最后中位数输出:top_minheap

代码:

import java.util.PriorityQueue;
public class Solution {
    // 定义大顶堆,使用lambda表达式
    public PriorityQueue<Integer> maxheap = new PriorityQueue<>((x,y)-> y-x);
    // 定义小顶堆,PriorityQueue默认创建小顶堆
    public PriorityQueue<Integer> minheap = new PriorityQueue<>();
    // 是否为奇数
    public boolean isOdd = false;
    public void Insert(Integer num) {
        if(!isOdd){ // 堆中数据偶数个
            if(minheap.isEmpty())
                minheap.add(num);
            else{
                if(num>=maxheap.peek())
                    minheap.add(num);
                else{
                    minheap.add(maxheap.poll());
                    maxheap.add(num);
                }
            }
        }else{ // 堆中数据奇数个
            if(num<=minheap.peek())
                maxheap.add(num);
            else{
                maxheap.add(minheap.poll());
                minheap.add(num);
            }
        }
        isOdd = !isOdd;
    }

    public Double GetMedian() {
        if(minheap.isEmpty())
            return 0.0;
        if(isOdd)
            return (double) minheap.peek();
        else
            return (double) (minheap.peek()+maxheap.peek())/2;
    }
}

最小堆和最大堆解释

堆的存储
  一般用数组来表示堆,若根结点存在序号0处, i结点的父结点下标就为(i-1)/2。i结点的左右子结点下标分别为2i+1和2i+2。

(注:如果根结点是从1开始,则左右孩子结点分别是2i和2i+1。)

如第0个结点左右子结点下标分别为1和2。

如最大化堆如下:
  1
左图为其存储结构,右图为其逻辑结构。

参考链接

https://www.cnblogs.com/shengrang/p/3843487.html
https://blog.csdn.net/weixin_34206899/article/details/93166272

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值