题目描述
n 只奶牛坐在一排,每个奶牛拥有 a
i 个苹果,现在你要在它们之间转移苹果,使得最后所有奶牛拥有的苹果数都相同,每一次,你只能从一只奶牛身上拿走恰好两个苹果到另一个奶牛上,问最少需要移动多少次可以平分苹果,如果方案不存在输出 -1。
输入描述:
每个输入包含一个测试用例。每个测试用例的第一行包含一个整数 n(1 <= n <= 100),接下来的一行包含 n 个整数 ai(1 <= ai <= 100)。
输出描述:
输出一行表示最少需要移动多少次可以平分苹果,如果方案不存在则输出 -1。
示例1
输入
4 7 15 9 5
输出
3
思路:
因为每次只能是2个,因此判断是否可以移动。 如果可以移动判断是否应该移动的是2的倍数
#include <iostream>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <queue>
#include <algorithm>
#include <cstring>
using namespace std;
typedef long long ll;
int a[1000];
int main(){
int n;
cin>>n;
int num=0;
int no=0;
for(int i=1;i<=n;i++)
{
cin>>a[i];
num+=a[i];
}
if(no&&n!=1||(num%n!=0))
cout<<-1<<endl;
else{
int ans=0;
int ave=num/n;
no=0;
for(int i=1;i<=n;i++)
{
if(a[i]<ave) ans+=(ave-a[i])/2;
if(abs(a[i]-ave)%2==1 ) no=1;
}
if(no) cout<<-1<<endl;
else cout<<ans<<endl;
}
}