合数阶群与素数阶群的双线性映射

合数阶群双线性映射

Ψ \Psi Ψ是群的生成算法, 输入安全参数 λ \lambda λ输出参数 ( p 1 , p 2 , p 3 , G , G T , e ) (p_1, p_2, p_3, G, G_T, e) (p1,p2,p3,G,GT,e), 其中, p 1 , p 2 , p 3 p_1, p_2, p_3 p1,p2,p3表示3个不同的大素数, G G G G T G_T GT表示两个 N N N阶循环群 ( N = p 1 p 2 p 3 N = p_1p_2p_3 N=p1p2p3), e : G × G → G T e: G \times G → G_T e:G×GGT表示双线性映射当且仅当满足以下3个条件:
(1) 双线性: ∀ u , v ∈ G \forall u, v \in G u,vG a , b ∈ Z N a,b \in Z_N a,bZN, 等式 e ( u a , v b ) = e ( u , v ) a b e(u^a, v^b) = e(u, v)^{ab} e(ua,vb)=e(u,v)ab成立.
(2) 非退化性: ∃ g ∈ G , s t .   e ( g , g ) \exists g \in G, st.~e(g, g) gG,st. e(g,g) G T G_T GT中阶为 N N N.
(3) 可计算性: 对于 ∀ u , v ∈ G \forall u, v \in G u,vG, ∃ \exists 计算e(u, v)的多项式时间算法.

衍生结论: 假设群 G p 1 , G p 2 , G p 3 G_{p_1}, G_{p_2}, G_{p_3} Gp1,Gp2,Gp3分别是群 G G G中阶为 p 1 , p 2 , p 3 p_1, p_2, p_3 p1,p2,p3的子群. 取参数 h i ∈ G p i , h j ∈ G p j , i ≠ j h_i \in G_{p_i}, h_j \in G_{p_j}, i \neq j hiGpi,hjGpj,i=j, 则必有 e ( h i , h j ) = 1 e(h_i, h_j) = 1 e(hi,hj)=1.

证明:
基于一个基本观察, g p 1 p 2 g^{p_1p_2} gp1p2是群 G p 3 G_{p_3} Gp3的生成元. 这样考虑, 令 t = g p 1 p 2 t = g^{p_1p_2} t=gp1p2, 在群 G G G中, g p 1 p 2 p 3 g^{p_1p_2p_3} gp1p2p3是生成元, 所以 t p 3 t^{p_3} tp3 G p 3 G_{p_3} Gp3的生成元. 同理 g p 1 p 3 g^{p_1p_3} gp1p3是群 G p 2 G_{p_2} Gp2的生成元, g p 2 p 3 g^{p_2p_3} gp2p3是群 G p 1 G_{p_1} Gp1的生成元.
所以可以用生成元表示, h i = g i α i , h j = g j α j h_i = g_i^{\alpha_i}, h_j = g_j^{\alpha_j} hi=giαi,hj=gjαj, 其中 g k = g p m p n , k , m , n ∈ { 1 , 2 , 3 } , m ≠ n , m ≠ k , n ≠ k g_k = g^{p_mp_n}, k,m,n \in \{1,2,3\}, m \neq n, m \neq k, n \neq k gk=gpmpn,k,m,n{1,2,3},m=n,m=k,n=k.
e ( h i , h j ) = e ( g i α i , g j α j ) = e ( g α i , g p l α j ) p 1 p 2 p 3 = 1 , l ∈ { 1 , 2 , 3 } e(h_i, h_j) = e(g_i^{\alpha_i}, g_j^{\alpha_j}) = e(g^{\alpha_i}, g^{p_l \alpha_j})^{p_1p_2p_3} = 1, l \in \{1,2,3\} e(hi,hj)=e(giαi,gjαj)=e(gαi,gplαj)p1p2p3=1,l{1,2,3}


素数阶群双线性映射

Ψ \Psi Ψ是群的生成算法, 输入安全参数 λ \lambda λ输出参数 ( p , G 1 , G 2 , G T , e , g , g ~ ) (p, G_1, G_2, G_T, e, g, \tilde{g}) (p,G1,G2,GT,e,g,g~), 其中, p p p表示大素数, G 1 , G 2 G1, G_2 G1,G2 G T G_T GT表示3个 p p p阶循环群, g , g ~ g, \tilde{g} g,g~分别表示 G 1 , G 2 G1, G_2 G1,G2的生成元, e : G 1 × G 2 → G T e: G_1 \times G_2 → G_T e:G1×G2GT表示双线性映射当且仅当满足以下3个条件:
(1) 双线性: ∀ u ∈ G 1 , v ∈ G 2 \forall u \in G_1, v \in G_2 uG1,vG2 a , b ∈ Z p a,b \in Z_p a,bZp, 等式 e ( u a , v b ) = e ( u , v ) a b e(u^a, v^b) = e(u, v)^{ab} e(ua,vb)=e(u,v)ab成立.
(2) 非退化性: ∃ g ∈ G 1 , g ~ ∈ G 2 , s t .   e ( g , g ~ ) \exists g \in G_1, \tilde{g} \in G_2, st.~e(g, \tilde{g}) gG1,g~G2,st. e(g,g~) G T G_T GT中阶为 p p p.
(3) 可计算性: 对于 ∀ u ∈ G 1 , v ∈ G 2 \forall u \in G_1, v \in G_2 uG1,vG2, ∃ \exists 计算e(u, v)的多项式时间算法.

补充:
G 1 ≠ G 2 G_1 \neq G_2 G1=G2, 称该映射为非对称双线性映射,
G 1 = G 2 G_1 = G_2 G1=G2, 则是对称双线性映射.

  • 6
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值