结构风险及其一般优化模型
经验误差做到最好,甚至到0,并不是一件好事,会造成严重的过拟合现象。因此,引入结构风险最小化的概念,来代替经验风险最小化。
1. 经验风险最小和过拟合
过拟合是不可以避免的,但是我们可以缓解。措施如下:
- 增加样本数量和压缩特征数量
- 提前退出训练
- 结构风险最小和正则化
结构风险由经验风险和正则化项(惩罚函数)组成:
R s t r ( f ) = 1 N ∑ i = 1 N L ( y i , f ( x i ) ) + λ J ( f ) (1.1) R_{str}(f)=\frac{1}{N}\sum\limits_{i=1}^N{L(y_i,f(x_i))+\lambda J(f)}\tag {1.1} Rstr(f)=N1i=1∑NL(yi,f(xi))+λJ(f)(1.1)
这么做的原因在于:
- 如果模型过拟合,那他一定是极其复杂的。我们就从结论入手,让模型不那么复杂。如果让正则项 J ( f ) J(f) J(f)代表模型的复杂度,那么就让他最小就好啦。
- 除了要让正则想最小,经验风险这一项取最小值也是必须的。
结合这两点,我们把结构风险表述为上面的式子,对结构风险最小化即可。
2. 结构风险最小和正则化
常见的正则化——回归的正则化:
-
线性回归
-
多项式回归
-
岭回归
-
Lasso回归
…
2.1 L 2 L_2 L2正则化和岭回归
- L 2 L_2 L2是一种常用的正则化手段:
L 2 ( θ ) = ∣ ∣ θ ∣ ∣ 2 2 = θ 1 2 + θ 2 2 + . . . + θ m 2 L_2(\theta)=||\theta||_2^2=\theta_1^2+\theta_2^2+...+\theta_m^2 L2(θ)=∣∣θ∣∣