机器学习优化模型——结构风险与正则化

本文探讨了机器学习中的结构风险最小化,解释了经验风险最小化可能导致过拟合的问题。文章介绍了正则化,特别是L2正则化(岭回归)和L1正则化(Lasso回归),以及它们在缓解过拟合、特征选择和模型稳定性方面的作用。此外,还讨论了L1和L2正则化的计算特点和应用。
摘要由CSDN通过智能技术生成

结构风险及其一般优化模型

经验误差做到最好,甚至到0,并不是一件好事,会造成严重的过拟合现象。因此,引入结构风险最小化的概念,来代替经验风险最小化。

1. 经验风险最小和过拟合

过拟合是不可以避免的,但是我们可以缓解。措施如下:

  • 增加样本数量和压缩特征数量
  • 提前退出训练
  • 结构风险最小和正则化

结构风险由经验风险和正则化项(惩罚函数)组成:
R s t r ( f ) = 1 N ∑ i = 1 N L ( y i , f ( x i ) ) + λ J ( f ) (1.1) R_{str}(f)=\frac{1}{N}\sum\limits_{i=1}^N{L(y_i,f(x_i))+\lambda J(f)}\tag {1.1} Rstr(f)=N1i=1NL(yi,f(xi))+λJ(f)(1.1)

这么做的原因在于:

  • 如果模型过拟合,那他一定是极其复杂的。我们就从结论入手,让模型不那么复杂。如果让正则项 J ( f ) J(f) J(f)代表模型的复杂度,那么就让他最小就好啦。
  • 除了要让正则想最小,经验风险这一项取最小值也是必须的。

结合这两点,我们把结构风险表述为上面的式子,对结构风险最小化即可。

2. 结构风险最小和正则化

常见的正则化——回归的正则化:

  1. 线性回归

  2. 多项式回归

  3. 岭回归

  4. Lasso回归

2.1 L 2 L_2 L2正则化和岭回归
  • L 2 L_2 L2是一种常用的正则化手段:
    L 2 ( θ ) = ∣ ∣ θ ∣ ∣ 2 2 = θ 1 2 + θ 2 2 + . . . + θ m 2 L_2(\theta)=||\theta||_2^2=\theta_1^2+\theta_2^2+...+\theta_m^2 L2(θ)=θ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值