495. 窗口
★☆ 输入文件:window.in
输出文件:
window.out
简单对比
时间限制:2 s 内存限制:256 MB
【问题描述】
给你一个长度为N的数组,一个长为K的滑动的窗体从最左移至最右端,你只能见到窗口的K个数,每次窗体向右移动一位,如下表:
Window position | Min value | Max value |
[1 3 -1] -3 5 3 6 7 | -1 | 3 |
1 [3 -1 -3] 5 3 6 7 | -3 | 3 |
1 3 [-1 -3 5]3 6 7 | -3 | 5 |
1 3 -1 [-3 5 3] 6 7 | -3 | 5 |
1 3 -1 -3 [5 3 6] 7 | 3 | 6 |
1 3 -1 -3 5 [3 6 7 ] | 3 | 7 |
你的任务是找出窗口在各位置时的max value,min value.
输入格式:
第一行n,k,第二行为长度为n的数组
输出格式:
第一行每个位置的min value,第二行每个位置的max value
样例
:window.in
8 3
1 3 -1 -3 5 3 6 7
window.out
-1 -3 -3 -3 3 3
3 3 5 5 6 7
数据范围:
20%:n≤500; 50%:n≤100000;
100%:n≤1000000;
所谓单调队列, 就是单调的队列, 如让你求最大值, 那么队列里保存的就是递减的数的【编号】, 对就是编号,
因为只有保存编号才可以判断这个数有没有在当前查询的K个数里面; 具体代码实现就是:
while(i-q[h]>=k) h++;
当插入时, 把队尾的小于等于a[i]的都删除, 再把i插入到队尾;
就是这样啦;
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=1000010;
const int INF=0x3f3f3f3f;
int q[maxn], cnt;
int a[maxn];
int D[maxn], X[maxn];
int main()
{
freopen("window.in", "r", stdin);
freopen("window.out", "w", stdout);
int n, k;
scanf("%d%d", &n, &k);
for(int i=1; i<=n; i++) scanf("%d", &a[i]);
int h=0, t=0;
a[0]=-INF;
for(int i=1; i<=n; i++) {
while(h<=t && a[q[t]]<=a[i]) t--;
q[++t]=i;
while(i-q[h]>=k) h++;
if(i>=k) D[++cnt]=a[q[h]];
}
h=0; t=0; cnt=0;
a[0]=INF;
for(int i=1; i<=n; i++) {
while(h<=t && a[q[t]]>=a[i]) t--;
q[++t]=i;
while(i-q[h]>=k) h++;
if(i>=k) X[++cnt]=a[q[h]];
}
for(int i=1; i<=cnt; i++) printf("%d ", X[i]);
printf("\n");
for(int i=1; i<=cnt; i++) printf("%d ", D[i]);
return 0;
}