20221014 复数、双曲复数、对偶数

前言

本博文介绍三种复数形式。

一. 双曲正弦函数和双曲余弦函数

- 双曲正弦函数

sinh ⁡ x = e x − e − x 2 \sinh x=\frac{e^x-e^{-x}}{2} sinhx=2exex
双曲正弦函数的泰勒展开式为:
sinh ⁡ x = x + x 3 3 ! + x 5 5 ! + x 7 7 ! + ⋯ ⋯ \sinh x=x+\frac{x^3}{3 !}+\frac{x^5}{5 !}+\frac{x^7}{7 !}+\cdots \cdots sinhx=x+3!x3+5!x5+7!x7+⋯⋯
即: sinh ⁡ x = ∑ n = 0 ∞ x 2 n + 1 ( 2 n + 1 ) ! \sinh x=\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1) !} sinhx=n=0(2n+1)!x2n+1
在这里插入图片描述

- 双曲余弦函数

cosh ⁡ x = e x + e − x 2 \cosh x=\frac{e^x+e^{-x}}{2} coshx=2ex+ex

双曲正弦函数的泰勒展开式为: cosh ⁡ x = 1 + x 2 2 ! + x 4 4 ! + x 6 6 ! + ⋯ \cosh x=1+\frac{x^2}{2 !}+\frac{x^4}{4 !}+\frac{x^6}{6 !}+\cdots coshx=1+2!x2+4!x4+6!x6+

在这里插入图片描述

- 双曲正切函数

tanh ⁡ x = sinh ⁡ x cosh ⁡ x = e x − e − x e x + e − x \tanh x=\frac{\sinh x}{\cosh x}=\frac{e^x-e^{-x}}{e^x+e^{-x}} tanhx=coshxsinhx=ex+exexex

二. 角度定义

圆角(来源于三角函数、圆函数): α \alpha α 对应图形面积的2倍。
在这里插入图片描述

双曲角(来源于双曲函数): α \alpha α 对应图形面积的2倍。

在这里插入图片描述

注意:这里并没有说哪个角度是 α \alpha α,可以将其理解成关于夹角的某个单调增函数。

右图具体面积等于 1 2 l n ( x + y ) \frac{1}{2}ln (x+y) 21ln(x+y),根据双曲角的定义 α = 2 2 l n ( x + y ) \alpha= \frac{2}{2}ln (x+y) α=22ln(x+y),即 x + y = exp ⁡ ( α ) x+y=\exp(\alpha) x+y=exp(α);且 x 2 − y 2 = 1 x^2-y^2=1 x2y2=1,则有 x − y = exp ⁡ ( − α ) x-y=\exp(-\alpha) xy=exp(α),则有 x = exp ⁡ ( α ) + exp ⁡ ( − α ) 2 x=\frac{\exp(\alpha)+\exp(-\alpha)}{2} x=2exp(α)+exp(α) y = exp ⁡ ( α ) − exp ⁡ ( − α ) 2 y=\frac{\exp(\alpha)-\exp(-\alpha)}{2} y=2exp(α)exp(α)

这里非常巧妙的简约形式,来源于一个虚拟的角 α \alpha α,或者说从面积的角度定义了角,这确实打开了新的思路。

三. 复数、双曲复数、对偶数(实数的扩张)

- 单位圆 x 2 + y 2 = 1 x^2+y^2=1 x2+y2=1

单位圆上定义复数单位 i i i,对应面积为 α 2 \frac{\alpha}{2} 2α,对应复数为 cos ⁡ α + i sin ⁡ α \cos \alpha+i \sin \alpha cosα+isinα,指数形式 exp ⁡ ( i α ) = cos ⁡ α + i sin ⁡ α \exp(i\alpha)=\cos \alpha+i \sin \alpha exp(iα)=cosα+isinα,展开为 exp ⁡ ( i α ) = 1 + i α + 1 2 ! i 2 α 2 + 1 3 ! i 3 α 3 + 1 4 ! i 4 α 4 + ⋯ \exp(i\alpha)=1+i\alpha+\frac{1}{2!}i^2\alpha^2+\frac{1}{3!}i^3\alpha^3+\frac{1}{4!}i^4\alpha^4+\cdots exp(iα)=1+iα+2!1i2α2+3!1i3α3+4!1i4α4+ cos ⁡ α = ∑ k = 0 ∞ ( − 1 ) k ( 2 k ) ! α 2 k = 1 − 1 2 ! α 2 + 1 4 ! α 4 − 1 6 ! α 6 + ⋯ \cos \alpha=\sum_{\mathrm{k}=0}^{\infty} \frac{(-1)^{\mathrm{k}}}{(2 \mathrm{k}) !} \alpha^{2 \mathrm{k}}=1-\frac{1}{2 !} \alpha^2+\frac{1}{4 !} \alpha^4-\frac{1}{6 !} \alpha^6+\cdots cosα=k=0(2k)!(1)kα2k=12!1α2+4!1α46!1α6+ sin ⁡ α = ∑ k = 0 ∞ ( − 1 ) k ( 2 k + 1 ) ! α 2 k + 1 = α − 1 3 ! α 3 + 1 5 ! α 5 − 1 7 ! α 7 + ⋯ \sin \alpha=\sum_{\mathrm{k}=0}^{\infty} \frac{(-1)^{\mathrm{k}}}{(2 \mathrm{k}+1) !} \alpha^{2 \mathrm{k}+1}=\alpha-\frac{1}{3 !} \alpha^3+\frac{1}{5 !} \alpha^5-\frac{1}{7 !} \alpha^7+\cdots sinα=k=0(2k+1)!(1)kα2k+1=α3!1α3+5!1α57!1α7+因此,性质为 i 2 = − 1 i^2=-1 i2=1
同时可知, a = a 2 + b 2 cos ⁡ α a=\sqrt{a^2+b^2}\cos \alpha a=a2+b2 cosα b = a 2 + b 2 sin ⁡ α b=\sqrt{a^2+b^2}\sin \alpha b=a2+b2 sinα,那么有 a + i b = a 2 + b 2 cos ⁡ α + i a 2 + b 2 sin ⁡ α a+ib=\sqrt{a^2+b^2}\cos \alpha+i\sqrt{a^2+b^2}\sin \alpha a+ib=a2+b2 cosα+ia2+b2 sinα,因此缩放为 a + i b = a 2 + b 2 exp ⁡ ( i α ) a+ib=\sqrt{a^2+b^2}\exp(i\alpha) a+ib=a2+b2 exp(iα)

- 单位双曲线 x 2 − y 2 = 1 x^2-y^2=1 x2y2=1

单位双曲线上定义双曲复数单位 j j j,对应面积为 α 2 \frac{\alpha}{2} 2α,对应复数为 cosh ⁡ α + j sinh ⁡ α \cosh \alpha+j \sinh \alpha coshα+jsinhα,指数形式 exp ⁡ ( j α ) = cosh ⁡ α + j sinh ⁡ α \exp(j\alpha)=\cosh \alpha+j \sinh \alpha exp(jα)=coshα+jsinhα,根据第1节中的 cosh ⁡ \cosh cosh sinh ⁡ \sinh sinh 的展开形式, exp ⁡ ( j α ) = 1 + j α + 1 2 ! j 2 α 2 + 1 3 ! j 3 α 3 + 1 4 ! j 4 α 4 + ⋯ \exp(j\alpha)=1+j\alpha+\frac{1}{2!}j^2\alpha^2+\frac{1}{3!}j^3\alpha^3+\frac{1}{4!}j^4\alpha^4+\cdots exp(jα)=1+jα+2!1j2α2+3!1j3α3+4!1j4α4+ cosh ⁡ α = 1 + α 2 2 ! + α 4 4 ! + α 6 6 ! + ⋯ \cosh \alpha=1+\frac{\alpha^2}{2 !}+\frac{\alpha^4}{4 !}+\frac{\alpha^6}{6 !}+\cdots coshα=1+2!α2+4!α4+6!α6+ sinh ⁡ α = α + α 3 3 ! + α 5 5 ! + α 7 7 ! + ⋯ ⋯ \sinh \alpha=\alpha+\frac{\alpha^3}{3 !}+\frac{\alpha^5}{5 !}+\frac{\alpha^7}{7 !}+\cdots \cdots sinhα=α+3!α3+5!α5+7!α7+⋯⋯因此,性质为 j 2 = 1 j^2=1 j2=1

同时可知, a cosh ⁡ α = b sinh ⁡ α = a 2 − b 2 cosh ⁡ 2 α − sinh ⁡ 2 α = a 2 − b 2 , if  a > b ,   a > 0 \frac{a}{\cosh \alpha}=\frac{b}{\sinh \alpha}=\frac{\sqrt {a^2-b^2}}{\sqrt {\cosh^2 \alpha-\sinh^2 \alpha}}=\sqrt {a^2-b^2},\quad \text{if} ~a>b, ~a>0 coshαa=sinhαb=cosh2αsinh2α a2b2 =a2b2 ,if a>b, a>0考虑其他的三个方向,则有 a = ∣ a 2 − b 2 ∣ cosh ⁡ α ,  b = ∣ a 2 − b 2 ∣ sinh ⁡ α a=\sqrt{|a^2-b^2|}\cosh \alpha,~ b=\sqrt{|a^2-b^2|}\sinh \alpha a=a2b2 coshα b=a2b2 sinhα缩放为 a + j b = ∣ a 2 − b 2 ∣ exp ⁡ ( j α ) a+jb=\sqrt{|a^2-b^2|}\exp(j\alpha) a+jb=a2b2 exp(jα)

- 单位双竖线 x 2 = 1 x^2=1 x2=1

右支上的点定义为 1 + ϵ α 1+\epsilon\alpha 1+ϵα,对应面积为 1 2 α \frac{1}{2}\alpha 21α ϵ \epsilon ϵ叫对偶数

在这里插入图片描述
为使其也有相应版本的指数形式, exp ⁡ ( ϵ α ) = 1 + ϵ α \exp(\epsilon\alpha)=1+\epsilon \alpha exp(ϵα)=1+ϵα,那么相应泰勒展开后说明,一旦 ϵ 2 = 0 \epsilon^2=0 ϵ2=0,上式成立。

那么对偶数的定义为 ϵ ≠ 0 \epsilon \neq 0 ϵ=0 ϵ 2 = 0 \epsilon^2=0 ϵ2=0

ϵ ( a + ϵ b ) = a ϵ \epsilon (a+\epsilon b) = a\epsilon ϵ(a+ϵb)=aϵ,向横坐标投影再逆时针旋转90度

缩放为 a + ε b = ∣ a ∣ exp ⁡ ( j α ) a+\varepsilon b=|a|\exp(j\alpha) a+εb=aexp(jα)

- 模:根号下自己乘自己的共轭

为什么在三个图中的模的具体定义不同?这是因为在三张同样的图上,定义的能量函数不同。

注:

参考:Bilibili 风竹云墨
https://www.bilibili.com/video/BV1xp4y1v7cw/?vd_source=5138fcb56aada2b6f1c51dfff686251a

https://baike.baidu.com/item/%E5%8F%8C%E6%9B%B2%E6%AD%A3%E5%BC%A6%E5%87%BD%E6%95%B0/4395524?fromtitle=sinh&fromid=1965202&fr=aladdin

https://zhuanlan.zhihu.com/p/444445404

  • 3
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DR-ZF-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值