数据分析面试【面试经验】-----总结和归纳

本文总结了数据分析面试中关于无偏性、有效性、一致性的概念,并对比了牛顿法与梯度下降法的区别。文章深入探讨了梯度下降法的收敛性,包括基本梯度下降、随机梯度下降和拟牛顿法、共轭梯度法等优化策略。此外,还提及了SVM中的优化问题求解和常用核函数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

阅读之前看这里👉:博主是正在进行数据分析师求职的一员,博客记录的是在学习和求职过程中一些总结,也希望和大家一起进步,在记录之时,未免存在很多疏漏和不全,如有问题,还请私聊博主指正。
博客地址:天阑之蓝的博客,学习过程中不免有困难和迷茫,希望大家都能在这学习的过程中肯定自己,超越自己,最终创造自己。

1.无偏性、有效性以及一致性(相合性)

  • 无偏性:

定义式:
E ( θ ^ ) = θ E(\hat\theta)=\theta E(θ^)=θ

无偏估计是用样本统计量来估计总体参数时的一种无偏推断估计量的数学期望等于被估计参数的真实值,则称此此估计量为被估计参数的无偏估计,即具有无偏性,是一种用于评价估计量优良性的准则。无偏估计的意义是:在多次重复下,它们的平均数接近所估计的参数真值。无偏估计常被应用于测验分数统计中。

在无偏估计中,抽样分布均值与总体参数的值相等。此时, θ \theta θ大约服从正态分布,是对称的,有偏估计会出现偏移。如下图所示:
在这里插入图片描述
无偏性的实际意义是指没有系统性的偏差。统计推断的误差有系统误差和随机误差两种。无论用什么样的估计值去估计,总会时而对某些样本偏高,时而对另一些样本偏低。而无偏性表示,把这些正负偏差在概率上平均起来,其值为零,即无偏估计量只有随机误差而没有系统误差。例如,用样本均值作为总体均值的估计时,虽无法说明一次估计所产生的偏差,但这种偏差随机地在0的周围波动,对同一统计问题大量重复使用不会产生系统偏差。

例子:比如在给出样本方差和样本标准差的公式时,分母是 n − 1 n-1 n1而不是 n n n,用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值