题目描述 Description
摘自算法导论。。。。。。
找出第k个被3,5,7除的时候,余数为2,3,2的数;
输入描述 Input Description
一个数k。
输出描述 Output Description
求出第k个符合条件的数。
样例输入 Sample Input
1
样例输出 Sample Output
23
数据范围及提示 Data Size & Hint
k>=1;
答案不超过long long所能存储的范围。
典型的数论题。
求解方法:
1)Mi=M/mi,∀i∈{1,2,…,n}是除了mi以外的n-1个整数的乘积。
三个模数m1=3,m2=5,m3=7的乘积是M=105,对应的M1=35,M2=21,M3=15.
2)计算出相应的数论倒数:ti=Mi mod mi
则求得t1=2,t2=1,t3=1.
3)Mi与对应的ti相乘
35×2=70 21×1=21 15×1=15
4)得到的结果与对应的余数相乘,结果相加
70×2 + 21×3 + 15×2 = 233
5)解的形式
x = 233+k×105,k∈Z.
《孙子算经》中实际上给出了最小正整数解,也就是k=-2时的解:x=23.
代码
#include <cstdio>
using namespace std;
int main(){
long long int k,num;
scanf("%lld",&k);
num=k*105-82;
printf("%lld",num);
return 0;
}