给你一个只包含 0 和 1 的 rows * columns 矩阵 mat ,请你返回有多少个 子矩形 的元素全部都是 1 。
示例 1:
输入:mat = [[1,0,1],
[1,1,0],
[1,1,0]]
输出:13
解释:
有 6 个 1x1 的矩形。
有 2 个 1x2 的矩形。
有 3 个 2x1 的矩形。
有 1 个 2x2 的矩形。
有 1 个 3x1 的矩形。
矩形数目总共 = 6 + 2 + 3 + 1 + 1 = 13 。
示例 2:
输入:mat = [[0,1,1,0],
[0,1,1,1],
[1,1,1,0]]
输出:24
解释:
有 8 个 1x1 的子矩形。
有 5 个 1x2 的子矩形。
有 2 个 1x3 的子矩形。
有 4 个 2x1 的子矩形。
有 2 个 2x2 的子矩形。
有 2 个 3x1 的子矩形。
有 1 个 3x2 的子矩形。
矩形数目总共 = 8 + 5 + 2 + 4 + 2 + 2 + 1 = 24 。
示例 3:
输入:mat = [[1,1,1,1,1,1]]
输出:21
示例 4:
输入:mat = [[1,0,1],[0,1,0],[1,0,1]]
输出:5
提示:
1 <= rows <= 150
1 <= columns <= 150
0 <= mat[i][j] <= 1
这道题竟然是字节跳动周赛的第三题,看见矩形,元素全1,首先前缀和方法肯定可以通过,那么就直接套用模板就行了,该题和leetcode85,leetcode221非常相似,甚至需要改动的代码也就一两行,代码如下,大部分都相同。
class Solution {
public:
int numSubmat(vector<vector<int>>& matrix) {
int m=matrix.size();
if(m==0)return 0;
int n=matrix[0].size();
vector<vector<int>>sum(m+1,vector<int>(n+1,0));
for(int i=1;i<=m;++i){
for(int j=1;j<=n;++j){
sum[i][j]=matrix[i-1][j-1];
}
}
for(int i=1;i<=m;++i){
for(int j=1;j<=n;++j){
sum[i][j]+=sum[i][j-1];
}
}
for(int i=1;i<=m;++i){
for(int j=1;j<=n;++j){
sum[i][j]+=sum[i-1][j];
}
}
int res=0;
for(int i=1;i<=m;++i){
for(int j=1;j<=n;++j){
for(int len1=1;len1+i-1<=m;++len1){
for(int len2=1;len2+j-1<=n;++len2){
if(getArea(sum,i,j,len1,len2)==len1*len2)++res;
else break;
}
}
}
}
return res;
}
int getArea(vector<vector<int>>& sum,int x0,int y0,int len1,int len2){
int x1=x0+len1-1,y1=y0+len2-1;
return sum[x1][y1]-sum[x1][y0-1]-sum[x0-1][y1]+sum[x0-1][y0-1];
}
};