盘点5款可视化交互式 Dashboard 工具,总有一款适合你

仪表盘 (Dashboard),可简单的理解为一个交互式网页,在其中,用户可以不懂代码,拖拖拽拽即可与数据交互、做数据探索建模分析、展示自己关注的结果

本文汇总了Python/R/Julia中5款仪表盘 (Dashboard)工具,简单比较其使用场景、学习难度、成熟度、支持语言等。

推荐加入

本文来自技术群小伙伴分享,喜欢本文点赞、关注、收藏。

目前开通了技术交流群,群友已超过3000人,添加时最好的备注方式为:来源+兴趣方向,方便找到志同道合的朋友

方式、添加微信号:dkl88191,备注:来自CSDN+技术交流 方式、微信搜索公众号:Python学习与数据挖掘,后台回复:加群+CSDN

图片

The GitHub star history of Viola, Dash, Shiny, Streamlit, and Panel.

Dash

Dash和前面介绍的plotly出自同一家公司,可基于Python, R, Julia和 F#语言高效开发仪表盘,为机器学习和数据科学结果提供良好展示;
Dash专注于企业级仪表板的创建部分功能开源(人名币玩家可尝试全功能企业版本),高级API plotly-express的发布使Dash更容易上手;
一个简单的Python Dash例子,使用熟悉的iris数据集,代码存入dash.t.py中,内容如下,

import dash
from dash import dcc
from dash import html
from dash.dependencies import Input, Output
import plotly.express as px

df = px.data.iris()
all_dims = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width']

app = dash.Dash(__name__)

app.layout = html.Div([
    dcc.Dropdown(id="dropdown",
                 options=[{
                     "label": x,
                     "value": x
                 } for x in all_dims],
                 value=all_dims[:2],
                 multi=True),
    dcc.Graph(id="splom"),
])


@app.callback(Output("splom", "figure"), [Input("dropdown", "value")])
def update_bar_chart(dims):
    fig = px.scatter_matrix(df, dimensions=dims, color="species")#plotly.express可视化
    return fig


app.run_server(debug=True)

python dash.t.py
Dash is running on http://xxx/
浏览器中打开 http://xxx/图片进一步学习:https://github.com/plotly/dash


Streamlit

相较于Dash,Streamlit只能基于Python开发仪表盘,但是完全开源比Dash更容易上手,几分钟即可创建一个仪表盘,可节省更多时间做数据分析。 一个简单Python Streamlit例子`,求任意数平方,代码存入stre.t.py中,内容如下,

import streamlit as st

x = st.slider('Select a value')
st.write(x, 'squared is', x * x)

streamlit run stre.t.py
You can now view your Streamlit app in your browser.Local URL: http://xx
打开http://xx图片更复杂的例子,利用自动驾驶数据集,使用YOLO做对象检测,

图片

进一步学习:https://github.com/streamlit/streamlit

Shiny

Shiny是R中的工具,能非常友好的融合R中的其它工具,譬如ggplot2等,推荐R用户使用
Shiny功能不及Dash强大,特别是Dash的企业收费版本
一个例子,和ggplot2一样,创建的页面非常优雅,

图片

进一步学习:https://github.com/rstudio/shiny

https://shiny.rstudio.com/tutorial/

Voila

Jupyter Notebook重度玩家首选,Voila快速将Jupyter Notebook变成仪表盘;
Voila非常轻量级,当需要将Jupyter Notebook结果展示给非技术团队时推荐。

Python Voila一个简单例子

图片

进一步学习:https://github.com/voila-dashboards/voila

Panel

需要快速将Jupyter Notebook变成仪表盘,但是Voila又不能充分满足这个需求时,推荐Panel
进一步学习:https://github.com/holoviz/panel图片

比较结果

比较结果汇总,参考6个指标

  • 成熟度 (Maturity)

  • 知名度 (Popularity)

  • 上手难度 (Simplicity)

  • 应用灵活度 (Adaptability)

  • 聚焦场景 (Focus)

  • 支持语言 (Language support)

结果划分分A、B、C三个等级:图片

(一)采购员 1.注册登录:以采购员账号登录,可修改个人信息。 2.采购需求分析:根据库存情况和销售趋势制定采购需求。 3.供应商管理:维护供应商信息,评估供应商绩效。 4.采购订单生成:生成采购订单,提交给经理审批。 5.采购进度跟踪:跟踪采购订单的执行进度。 (二)销售员 1.注册登录:使用销售员账号登录,可修改个人信息。 2.商品销售:记录商品销售信息,生成销售订单。 3.客户管理:记录客户信息,维护客户关系。 4.促销活动执行:执行超市的促销活动,如打折、满减等。 (三)仓库管理员 1.注册登录:以仓库管理员账号登录,可修改个人信息。 2.入库管理:记录商品入库信息,包括商品名称、数量、生产日期等。 3.出库管理:记录商品出库信息,对应销售订单发货。 4.库存盘点:进行库存盘点,确保库存数据准确。 5.库存调整:对库存数量进行调整,如报损、换货等操作。 6.库存查询:随时查询库存商品的详细信息。 (四)经理 1.注册登录:使用账号登录系统,可修改个人信息。 2.员工管理:管理仓库管理员、销售员、采购员的账号信息。 3.销售数据分析:利用 Echarts 可视化分析销售数据,如销售额趋势、畅销商品、销售地域分布等。 4.库存监控:查看库存量、库存预警等情况。 5.采购审批:审批采购员提交的采购申请。 6.业绩考核:对员工的工作业绩进行考核。根据上面需求写出完整的web前端代码
最新发布
03-18
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值