CCM DC-DC变换器建模(3): 反激变换器flyback converter
前文:
CCM DC-DC变换器建模(1):buck变换器的平均模型和小信号模型
CCM DC-DC变换器建模(2): boost,传递函数,右半平面零点(RHPZ)
仿真软件还是LTspice。
仿真参数
- 输入电压Vin:48V
- 输出电压Vo:12V
- 输出电流Io:2A
- 输出电容C:100uF
- 占空比D:约0.33
- 开关周期:3us(频率333kHz)
- 原边励磁电感Lm:64uH
- 原副边匝数比n:2:1
仿真模型:
LTspice里的理想变压器用两个电感
L1 L2
搭建,添加一个spice命令K1 L1 L2 1
,说明耦合系数为1。原副边匝数比2:1,反映为原边电感量是副边的2^2=4倍
基本的波形,2A负载电流下,在MOS开通后,原边电流IL1
是从大于0的位置开始上升,所以是CCM模式。
平均模型
推导
MOS的电流波形和二极管两端的电压波形如下:
接下来是用开关周期平均值代替二极管和MOS。
对于二极管电压,平均电压为:
v
D
=
D
(
V
i
n
n
+
v
o
u
t
)
v_D=D(\frac{V_{in}}{n}+v_{out})
vD=D(nVin+vout) (比如,仿真结果中,高电平为48/2+12=36V
,占空比为D
)
对于MOS,平均电流
i
M
O
S
=
D
i
L
m
i_{MOS}=Di_{Lm}
iMOS=DiLm,而励磁电流难以测量,需要转换为变压器副边的电流IL2,也就是二极管的电流ID1来表示
原边和副边电流关系如下,可见幅值上有2倍(匝数比)的关系。
最终,用副边的电流表示,MOS的平均电流为
i
M
O
S
=
D
i
L
m
=
D
i
L
2
n
(
1
−
D
)
i_{MOS}=Di_{Lm}=\frac{Di_{L2}}{n(1-D)}
iMOS=DiLm=n(1−D)DiL2
原拓扑和平均模型对比如下:
仿真
占空比不变,输入在48V和60V跳变,原拓扑和平均模型的波形(MOS电流、输出电压)对比如下。输出电压稳态值的差异主要来自二极管的压降。
发现平均模型的阻尼不大对,导致暂态波形有一定区别,暂时没找到问题在哪里。
小信号模型
推导
把平均模型求全微分。
i
^
M
O
S
=
d
(
D
i
L
2
n
(
1
−
D
)
)
=
D
I
D
2
n
(
1
−
D
)
2
d
^
+
D
n
(
1
−
D
)
i
^
L
2
\hat{i}_{MOS}=d\left(\frac{Di_{L2}}{n(1-D)} \right)=\frac{DI_{D2}}{n(1-D)^2}\hat{d}+\frac{D}{n(1-D)}\hat{i}_{L2}
i^MOS=d(n(1−D)DiL2)=n(1−D)2DID2d^+n(1−D)Di^L2
v
^
D
=
(
V
i
n
n
+
V
o
u
t
)
d
^
+
D
n
v
^
i
n
+
D
v
^
o
u
t
\hat{v}_D=\left( \frac{V_{in}}{n}+V_{out}\right) \hat{d}+\frac{D}{n}\hat{v}_{in}+D\hat{v}_{out}
v^D=(nVin+Vout)d^+nDv^in+Dv^out
其中,ID2的平均值为Iout。
这边假设负载是恒电流2A,所以直接用
Iout
表示。也可以换成Vout/Rload
平均模型和交流小信号模型对比:
- 交流小信号模型中去除了直流分量,因此直流源默认是0。
- 占空比去除了直流分量,因此平均模型的占空比在0.33和0.4跳变,而小信号模型在0和0.07跳变。
仿真
占空比跳变
仿真模型如上,波形如下:小信号模型的波形Vout3
相当于平均模型Vout2
去除了直流偏置。但是暂态还是不大符合。
输入跳变
仿真模型:此时占空比分别固定为0.33和0,而改变输入。
参考资料
- 视频1:Static and Dynamic Modelling of a Flyback Converter in CCM
- 顺便推荐另外一个博主(查了一下,和视频1的这两位都是IEEE Fellow):Sam Ben-Yaakov
- 仿真模型放在: Flyback反激变换器小信号模型LTspice建模