(二)基于企业现金流预测的投资决策-算法实现

本文探讨了基于企业现金流预测的投资决策项目,包括数据探索性分析和算法实现。通过对cashflow_category和cashflow_subcategory的分析,发现数据分布合理,无明显异常。算法框架包括现金流预测、安全余额计算和投资金额计算三个步骤,为投资决策提供依据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据介绍

上一节我们已经介绍过了“基于企业现金流预测的投资决策”的项目背景,并且做了业务需求分析和算法搭建框架梳理。接下来我们来梳理一下我们用到的数据长什么样子,并做一个简单的探索性分析。

环境准备:

  • python >= 3.7
  • pandas >= 1.1.3
  • numpy >= 1.19.2
  • prophet 1.0
  • matplotlib >= 3.3.2
  • jupyter_nbextensions_configurator (非必须, 推荐安装)

数据探索性分析

from prophet import Prophet
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
Backend TkAgg is interactive backend. Turning interactive mode on.
# cashflow_data: 每家子公司/每天/每种中类型的现金流入和流出数据
## date: 日期
## cashflow_category: 现金流类型-父类
## cashflow_subcategory: 现金流类型-子类
## cashflow: 现金流
## branch_id: 子公司ID
cashflow_data = pd.read_csv('data/cashflow_data.csv', parse_dates=['date'])
cashflow_data.head(2)
Out[5]: 
        date cashflow_category cashflow_subcategory       cashflow  branch_id
0 2015-04-01           cash_in                sales  275765.184075          1
1 2015-04-02           cash_in                sales  255256.272380          1
查看cashflow_category和cashflow_subcategory的范围

                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

现实、狠残酷

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值