51nod 1050 循环数组最大子段和

基准时间限制:1 秒 空间限制:131072 KB 分值: 10  难度:2级算法题


N个整数组成的循环序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的连续的子段和的最大值(循环序列是指n个数围成一个圈,因此需要考虑a[n-1],a[n],a[1],a[2]这样的序列)。当所给的整数均为负数时和为0。
例如:-2,11,-4,13,-5,-2,和最大的子段为:11,-4,13。和为20。
Input
第1行:整数序列的长度N(2 <= N <= 50000)
第2 - N+1行:N个整数 (-10^9 <= S[i] <= 10^9)
Output
输出循环数组的最大子段和。
Input示例
6
-2
11
-4
13
-5
-2
Output示例
20

题意:给定一个长度为50000的数组,求它的循环数组的最大子段和。

题解:本题与普通的最大子段和问题不同的是:此最大子段和可以是首尾相接的情况。求解主要分为两种:

    (1)正常数组中间的某一段和最大。这个可以通过普通的最大子段和问题求出。

    (2)此数组首尾相接的某一段和最大。这种情况是由于数组中间某段和为负值,且绝对值很大导致的,那么我们只需要把中间的和为负值且绝对值最大的这一段序列求出,用总的和减去它就行了。

     即,先对原数组求最大子段和,得到ans1,然后把数组中所有元素符号取反,再求最大子段和,得到ans2,数组的所有元素和为sum,那么最终答案就是ans=max(ans1, sum + ans2)

代码如下

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int main()
{
	long long a[50005],b[50005];
	int n,i;
	long long sum=0,ans1=0,ans2=0,ans,res1=0,res2=0;
	scanf("%d",&n);
	for(i=1;i<=n;i++)
	{
		scanf("%lld",&a[i]);
		sum+=a[i];
		b[i]=-a[i];
		res1=max(res1+a[i],a[i]);
		ans1=max(res1,ans1);
		res2=max(res2+b[i],b[i]);
		ans2=max(res2,ans2);
	}	
	ans=max(ans1,sum+ans2);	
	printf("%lld\n",ans);
	return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值