《迁移学习简明手册》阅读笔记——特征选择

特征选择

主要思想

源域和目标域中均含有一部分公共的特征,在这部分公共的特征上,源领域和目标领域的数据分布是一致的。因此,此类方法的目标就是,通过机器学习方法,选择出这部分共享的特征,即可依据这些特征构建模型

SCL 方法

作者将这些公共的特征叫做 Pivot feature。找出来这些 Pivot feature,就完成了迁移学习的任务
在这里插入图片描述
Pivot feature 指的是在文本分类中,在不同领域中出现频次较高的那些词。

  • 特征选择法从源域和目标域中选择提取共享的特征,建立统一模型
  • 通常与分布自适应方法进行结合
  • 通常采用稀疏表示 ∣ ∣ A ∣ ∣ 2 , 1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值