特征选择
主要思想
源域和目标域中均含有一部分公共的特征,在这部分公共的特征上,源领域和目标领域的数据分布是一致的。因此,此类方法的目标就是,通过机器学习方法,选择出这部分共享的特征,即可依据这些特征构建模型
SCL 方法
作者将这些公共的特征叫做 Pivot feature。找出来这些 Pivot feature,就完成了迁移学习的任务

Pivot feature 指的是在文本分类中,在不同领域中出现频次较高的那些词。
- 特征选择法从源域和目标域中选择提取共享的特征,建立统一模型
- 通常与分布自适应方法进行结合
- 通常采用稀疏表示 ∣ ∣ A ∣ ∣ 2 , 1