首发:LLM4Decompile反编译大模型的试用实践过程梳理

LLM4Decompile 是一款开源大型语言模型,专注于反编译工作,根据公开资料显示:根据公开资料显示:LLM4Decompile具备将二进制文件反编译为C语言代码的能力,并在著名的HumanEval 数据集上取得了21%的反编译通过率,相较于GPT4反编译能力提升了50%。LLM4Decompile项目采用了AnghaBench 的一百万个函数作为训练数据,针对Linux x86_64平台,使用GCC编译器并在不同优化级别(O0-O3)下将源码编译为二进制文件。随后通过objdump指令,将二进制文件反汇编为汇编指令,与原始代码组成匹配的数据对。该项目基于DeepSeek-Coder进行了模型sequence-to-sequence微调,以汇编指令作为输入,计算反编译结果与源码之间的的Cross Entropy Loss。通过不断优化损失函数,项目训练了一系列规模从13亿到330亿的大型模型。

基于此,我们将其内容进行了实践,现在将其试用过程的一些关键点进行介绍:

论文地址:https://arxiv.org/abs/2403.05286

代码地址:https://github.com/albertan017/LLM4Decompile

首先,在github找到代码位置:

      然后,我们开始进行实操:

      1.搭建基础环境1.python3,我用的是3.12.4      

     2.安装Anaconda,命令行图形化界面都行。

     按照指引,执行以下命令:     

cd LLM4Decompile
conda create -n 'llm4decompile' python=3.9 -y
conda activate llm4decompile
pip install -r requirements.txt

    注意,如果执行最后一句(pip install)如果有些依赖没有成功,可以暂时忽略,可以打开

    requirements.txt找到里面的依赖,一个一

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值