CS231n: Convolutional Neural Networks for Visual Recognition Spring 2017 英文课程大纲

这是春季2017年计算机视觉课程的教学大纲,涵盖了从课程介绍到深度学习软件等内容。课程包括计算机视觉概述、历史背景、课程安排等,并详细介绍了图像分类、卷积神经网络、深度学习软件等主题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

This is the syllabus for the Spring 2017 iteration of the course. 

Event TypeDateDescriptionCourse Materials
Lecture 1Tuesday 
April 4
Course Introduction 
Computer vision overview 
Historical context 
Course logistics
[slides] [video]
Lecture 2Thursday 
April 6
Image Classification 
The data-driven approach 
K-nearest neighbor 
Linear classification I
[slides] [video] 
[python/numpy tutorial]
[image classification notes]
[linear classification notes]
Lecture 3Tuesday 
April 11
Loss Functions and Optimization 
Linear classification II
Higher-level representations, image features
Optimization, stochastic gradient descent
[slides] [video] 
[linear classification notes]
[optimization notes]
Lecture 4Thursday 
April 13
Introduction to Neural Networks 
Backpropagation
Multi-layer Perceptrons
The neural viewpoint
[slides] [video] 
[backprop notes]
[linear backprop example]
[derivatives notes] (optional) 
[Efficient BackProp] (optional)
related: [1][2][3] (optional)
Lecture 5Tuesday 
April 18
Convolutional Neural Networks 
History 
Convolution and pooling 
ConvNets outside vision
[slides] [video] 
ConvNet notes
Lecture 6Thursday 
April 20
Training Neural Networks, part I 
Activation functions, initialization, dropout, batch normalization
[slides] [video] 
Neural Nets notes 1
Neural Nets notes 2
Neural Nets notes 3
tips/tricks: [1][2][3] (optional) 
Deep Learning [Nature] (optional)
A1 DueThursday 
April 20
Assignment #1 due 
kNN, SVM, SoftMax, two-layer network
[Assignment #1]
Lecture 7Tuesday 
April 25
Training Neural Networks, part II 
Update rules, ensembles, data augmentation, transfer learning
[slides] [video] 
Neural Nets notes 3
Proposal dueTuesday 
April 25
Couse Project Proposal due[proposal description]
Lecture 8Thursday 
April 27
Deep Learning Software 
Caffe, Torch, Theano, TensorFlow, Keras, PyTorch, etc
[slides] [video]
Lecture 9Tuesday 
May 2
CNN Architectures 
AlexNet, VGG, GoogLeNet, ResNet, etc
[slides] [video] 
AlexNetVGGNetGoogLeNetResNet
Lecture 10Thursday 
May 4
Recurrent Neural Networks 
RNN, LSTM, GRU 
Language modeling 
Image captioning, visual question answering 
Soft attention
[slides] [video] 
DL book RNN chapter (optional)
min-char-rnnchar-rnnneuraltalk2
A2 DueThursday 
May 4
Assignment #2 due 
Neural networks, ConvNets
[Assignment #2]
MidtermTuesday 
May 9
In-class midterm
Location: Various (not our usual classroom)
 
Lecture 11Thursday 
May 11
Detection and Segmentation 
Semantic segmentation 
Object detection 
Instance segmentation
[slides] [video] 
Lecture 12Tuesday 
May 16
Visualizing and Understanding 
Feature visualization and inversion 
Adversarial examples 
DeepDream and style transfer
[slides] [video] 
DeepDream
neural-style
fast-neural-style
MilestoneTuesday 
May 16
Course Project Milestone due 
Lecture 13Thursday 
May 18
Generative Models 
PixelRNN/CNN 
Variational Autoencoders 
Generative Adversarial Networks
[slides] [video] 
Lecture 14Tuesday 
May 23
Deep Reinforcement Learning 
Policy gradients, hard attention 
Q-Learning, Actor-Critic
[slides] [video] 
Guest LectureThursday 
May 25
Invited Talk: Song Han 
Efficient Methods and Hardware for Deep Learning
[slides] [video] 
A3 DueFriday 
May 26
Assignment #3 due[Assignment #3]
Guest LectureTuesday 
May 30
Invited Talk: Ian Goodfellow 
Adversarial Examples and Adversarial Training
[slides] [video] 
Lecture 16Thursday 
June 1
Student spotlight talks, conclusions[slides]
Poster DueMonday 
June 5
Poster PDF due[poster description]
Poster PresentationTuesday
June 6
  
Final Project DueMonday 
June 12
Final course project due date[reports]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏普通

谢谢打赏~普通在此谢过

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值