Knowledge Graph Embedding by Translating on Hyperplanes

Knowledge Graph Embedding by Translating on Hyperplanes

0. 问题

  • TransE 无法解决 Reflexive, 1-N, N-1, N-N 等关系
  • TransE 中构造负三元组样本的方式是随机替换三元组中的 h h h t t t, 由于知识图谱不可能包含所有的知识, 可能会构造出正确的三元组, 却把它当作负样本来处理, 引入假阴性的标签

1. 总结

  • 提出一种基于翻译的模型 TransH, 将 r e l a t i o n relation relation 看作是在低维空间中由 h e a d head head t a i l tail tail 在某个超平面上的一种翻译
  • 提出了一种构造负三元组样本的方法, 为每种替换设置不同的概率. 使得 1 − n 1-n 1n 关系中 “替换掉h” n − 1 n-1 n1 关系中 “替换掉t” 有着更大的概率.

2. 主要思想

  • 每个 r e l a t i o n relation relation 由超平面的法向量 w r \mathbf{w}_{r} wr 和该超平面上的翻译向量 d r \mathbf{d}_{r} dr 表示. 约束 h \mathbf{h} h t \mathbf{t} t 在该超平面上的投影 h ⊥ \mathbf{h}_{\perp} h t ⊥ \mathbf{t}_{\perp} t 满足 h ⊥ + d r = t ⊥ \mathbf{h}_{\perp} + \mathbf{d}_{r} = \mathbf{t}_{\perp} h+dr=t .

3. TransH 方法

约束 ∥ w r ∥ 2 = 1 \left\|\mathbf{w}_{r}\right\|_{2}=1 wr2=1, 可得
h ⊥ = h − w r h w r t ⊥ = t − w r t w r \begin{aligned} \mathbf{h}_{\perp} &=\mathbf{h}-\mathbf{w}_{r} \mathbf{h} \mathbf{w}_{r} \\ \mathbf{t}_{\perp} &=\mathbf{t}-\mathbf{w}_{r} \mathbf{t} \mathbf{w}_{r} \end{aligned} ht=hwrhwr=t

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值