Text-Enhanced Representation Learning for Knowledge Graph
0. 问题
- TransE、TransH、TransR 在 1-N,N-1 和 N-N 关系中的表现不佳
- 图谱结构稀疏导致学习到的表征不准确
1. 总结
利用Word2Vec从文本中学习实体和关系的上下文表征, 然后线性变换到图谱嵌入空间中.学习线性变换的参数, 使得图谱嵌入空间中, 正确三元组的 ∥ h ^ + r ^ − t ^ ∥ 2 2 \|\widehat{\mathrm{h}}+\widehat{\mathbf{r}}-\widehat{\mathbf{t}}\|_{2}^{2} ∥h +r −t ∥22 接近于0.
2. 输入
- 知识图谱 K G KG KG, 以三元组 ( h , r , t ) (h,r,t) (h,r,t)表示
- 语料库 D = { w 1 , w 2 , ⋯ , w m } D=\left\{w_{1}, w_{2}, \cdots, w_{m}\right\} D={ w1,w2,⋯,wm}, w i w_{i} wi为单词, m m m为文本长度
3. 方法
-
Entity Annotation
使用实体链接工具(AIDA, TAGME, Wikify! 等)来标注 D D D中的实体. 标注后得到 D ′ = { x 1 , x 2 , ⋯ , x m } {\rm{D'}}=\left\{x_{1}, x_{2}, \cdots, x_{m}\right\} D′={ x1,x2,⋯,xm}, x i x_{i} xi为 K G KG KG中的实体或 D D D中的单词. m ′ < m {\rm{m'}} < m m′<m, 因为 D D D中的一些词组(连续几个单词)被标为了一个实体.
-
Textual Context Embedding
构建共现网络 G = ( X , Y ) \

最低0.47元/天 解锁文章
1024

被折叠的 条评论
为什么被折叠?



