Text-Enhanced Representation Learning for Knowledge Graph

Text-Enhanced Representation Learning for Knowledge Graph

0. 问题

  • TransE、TransH、TransR1-N,N-1N-N 关系中的表现不佳
  • 图谱结构稀疏导致学习到的表征不准确

1. 总结

利用Word2Vec从文本中学习实体和关系的上下文表征, 然后线性变换到图谱嵌入空间中.学习线性变换的参数, 使得图谱嵌入空间中, 正确三元组的 ∥ h ^ + r ^ − t ^ ∥ 2 2 \|\widehat{\mathrm{h}}+\widehat{\mathbf{r}}-\widehat{\mathbf{t}}\|_{2}^{2} h +r t 22 接近于0.

2. 输入

  • 知识图谱 K G KG KG, 以三元组 ( h , r , t ) (h,r,t) (h,r,t)表示
  • 语料库 D = { w 1 , w 2 , ⋯   , w m } D=\left\{w_{1}, w_{2}, \cdots, w_{m}\right\} D={ w1,w2,,wm}, w i w_{i} wi为单词, m m m为文本长度

3. 方法

  • Entity Annotation

    使用实体链接工具(AIDA, TAGME, Wikify! 等)来标注 D D D中的实体. 标注后得到 D ′ = { x 1 , x 2 , ⋯   , x m } {\rm{D'}}=\left\{x_{1}, x_{2}, \cdots, x_{m}\right\} D={ x1,x2,,xm}, x i x_{i} xi K G KG KG中的实体或 D D D中的单词. m ′ < m {\rm{m'}} < m m<m, 因为 D D D中的一些词组(连续几个单词)被标为了一个实体.

  • Textual Context Embedding

    构建共现网络 G = ( X , Y ) \

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>