Translating embeddings for modeling multi-relational data

Translating embeddings for modeling multi-relational data

0. 目的

将多关系数据中的实体和关系嵌入到低维空间中去表示

1. 总结

提出一种基于翻译的模型 TransE, 将 relation(关系) 看作是在低维空间中由 head entity(头实体)tail entity(尾实体) 的一种翻译

2. 主要思想

  • 对于正确的关系 l t l_t lt, 使得 d ( h + l t , t ) d(\mathbf{h+l_t}, \mathbf{t}) d(h+lt,t) 接近于0
  • 对于错误的关系 l f l_f lf, 使得 d ( h + l f , t ) d(\mathbf{h+l_f}, \mathbf{t}) d(h+lf,t) 尽可能大

其中 d ( a , b ) d(\mathbf{a},\mathbf{b}) d(a,b) 表示 a \mathbf{a} a b \mathbf{b} b 的相似度( L 1 L_1 L1范数 或 L 2 L_2 L2范数)

3. 方法

优化目标: margin-based loss fuction​
L = ∑ ( h , r , t ) ∈ S ( h ′ , r , t ′ ) ∈ S ′ max ⁡ ( 0 , f ( h , r , t ) + γ − f ( h ′ , r , t ′ ) ) L=\sum_{(h, r, t) \in \mathcal{S}\left(h^{\prime}, r, t^{\prime}\right) \in \mathcal{S}^{\prime}} \max \left(0, f(h, r, t)+\gamma-f\left(h^{\prime}, r, t^{\prime}\right)\right) L=(h,r,t)S(h,r,t)Smax(0,f(h,r,t)+γf(h,r,t))
其中 f ( h , r , t ) f(h, r, t) f(h,r,t)表示正样本, f ( h ′ , r , t ′ ) f\left(h^{\prime}, r, t^{\prime}\right) f(h,r,t)表示负样本. γ \gamma γ m a r g i n margin margin, 表示正样本的分数要比负样本分数高出多少.

TransE​ 算法如下, 其中 u n i f o r m uniform uniform 表示均匀分布.
在这里插入图片描述

4. Question

  • 1-N, N-1, N-N 关系上评估结果方差特别大, 不能处理这三种关系
对于基于TransE或类似模型进行推理,通常可以采用以下步骤: 1. 构建知识图谱:将知识库中的实体和关系抽象成节点和边,构建一个图谱。 2. 训练TransE模型:使用知识图谱作为输入,训练TransE模型来学习实体之间的关系。 3. 进行推理:通过查找知识图谱中的实体和关系,进行推理。 其中,比较关键的是如何训练TransE模型。TransE模型的核心思想是将实体和关系映射到同一向量空间中,从而在向量空间中计算它们之间的相似度。在训练阶段,需要最小化实体和关系之间的距离,使得真实的三元组距离近,而虚假的三元组距离远。相似度可以使用余弦相似度或点积等函数计算,具体实现可参考论文《TransE: Translating Embeddings for Modeling Multi-relational Data》。 下面给出一个简单的例子:假设有一个知识库包含以下三元组: (Tom, hasChild, Harry) (Tom, hasChild, Lily) (Lily, sibling, Harry) 使用TransE模型,我们可以将Tom、Harry和Lily分别映射到向量空间中的三个向量,然后通过计算向量之间的距离,来推理Tom是否是Harry的父亲。具体过程如下: 1. 将实体和关系映射到向量空间中: Tom -> (0, 0) Harry -> (2, 0) Lily -> (1, 1) hasChild -> (1, 0) sibling -> (0, 1) 2. 通过向量之间的距离计算相似度: sim(Tom, hasChild, Harry) = cos((0+1-2)/3) ≈ -0.63 sim(Tom, hasChild, Lily) = cos((0+1-1)/3) ≈ 0.33 sim(Tom, sibling, Harry) = cos((0-1-2)/3) ≈ -0.94 由此可见,Tom与Harry之间的相似度较低,因此不能推断Tom是Harry的父亲。而Tom与Lily之间的相似度较高,说明Tom是Lily的父亲。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>