思考:
提到O(nlogn)的时间复杂度进行排序首先就想到归并排序,但是空间复杂度不是O(n)吗?为什么是常熟级空间复杂度,常数级空间复杂度,指的是算法所需的额外存储空间与问题的输入规模无关。后来看到别人的博客:Sort List——经典(链表中的归并排序)“因为原来使用归并时,都是 O(N)的,需要复制出相等的空间来进行赋值归并。对于链表,实际上是可以实现常数空间占用的(链表的归并排序不需要额外的空间)”,在下面的操作也只是开辟了一个链表节点的空间。
注意:快慢指针找链表中点的停止条件:fast->next &&fast->next->next
归并排序,递归到最底层,将会是两个节点,所以就成了有序的,接下来就是简单的“合并两个有序的链表问题”。
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode(int x) : val(x), next(NULL) {}
* };
*/
class Solution {
public:
ListNode* mergeTwoLists(ListNode* l1, ListNode* l2) {
ListNode l(0); //建立一个新的链表
ListNode*ptr = &l;
while(l1&&l2){
if(l1->val <= l2->val){
ptr->next = l1;
l1 = l1->next;
}
else{
ptr->next = l2;
l2 = l2->next;
}
//ptr表示当前的头部结点,添加一个节点之后,无论是l1,l2,都必须向后移动一个
ptr = ptr->next;
}
if(l1){
ptr->next = l1;
}
else if(l2){
ptr->next = l2;
}
return l.next;
}
ListNode* sortList(ListNode* head) {
if(head == NULL || head->next == NULL){
return head;
}
//通过快慢指针来找到链表的中点
ListNode* fast = head,*slow = head;
while(fast->next && fast->next->next){
slow = slow->next;
fast = fast->next->next;
}
ListNode*right = slow->next;
slow->next = NULL;
ListNode*l1 = sortList(head);
ListNode*l2 = sortList(right);
return mergeTwoLists(l1,l2);
}
};