力扣
题目描述
请设计一个函数,用来判断在一个矩阵中是否存在一条包含某字符串所有字符的路径。路径可以从矩阵中的任意一个格子开始,每一步可以在矩阵中向左,向右,向上,向下移动一个格子。如果一条路径经过了矩阵中的某一个格子,则之后不能再次进入这个格子。 例如 a b c e s f c s a d e e 这样的3 X 4 矩阵中包含一条字符串"bcced"的路径,但是矩阵中不包含"abcb"路径,因为字符串的第一个字符b占据了矩阵中的第一行第二个格子之后,路径不能再次进入该格子。
非常详细的回溯法的总结:回溯法总结
题目读完就发现他是一种搜索策略,看看能不能找到一条路径(字符串),那就得用回溯法,回溯法在搜索过程中一旦发现有冲突,它就及时“剪枝”,避免了大量无谓的搜索,所以大大提高了搜索效率。
感觉基础的回溯法的题目和二叉树的DFS/BFS都一样,都是一些模板问题。
一个搜索函数,三部分:
1、是否满足了条件:此题中搜索路径的长度等于字符串长度了吗?
2、是否需要剪枝:搜索已经越界;搜索的字符和要求的不符合
3、对每个子情况进行搜索
一些超级无聊的问题:写完了之后发现通过不了,检查几遍代码发现原来是修改了常量字符串。
只能再创建一个visit数组了。真无语了!明明是c++非要用char*。但是实际上我弄了个二维vector....而且有个问题:如何把二维数组的一维表示再转换成一个二维数组!
//char* matrix, int rows, int cols
//matrix是二维数组一维表示,即:[ABCD;EFGH;OPST] 转换成[ABCDEFGHOPST]
//如何把它转换成二维呢?
//注意在赋值的时候是:i*cols+j;这里乘的是列数,因为遍历完一行要向后推移列数个元素。
vector<vector<char>> character(rows,vector<char>(cols,'0'));
for(int i = 0;i<rows;i++){
for(int j = 0;j<cols;j++){
character[i][j] = matrix[i*cols+j];
}
}
具体的代码:
class Solution {
public:
bool hasPath(char* matrix, int rows, int cols, char* str)
{
if(!matrix||!str||rows<1||cols<1) return false;
vector<vector<char>> character(rows,vector<char>(cols,'0'));
for(int i = 0;i<rows;i++){
for(int j = 0;j<cols;j++){
character[i][j] = matrix[i*cols+j];
}
}
for(int i =0;i<rows;i++){
for(int j = 0; j<cols;j++){
if(search(character,i,j,rows,cols,str,0)){
return true;
}
}
}
return false;
}
bool search(vector<vector<char>>& matrix, int i, int j, int rows, int cols,char* str,int index){
if(index == strlen(str)) return true;
if(i<0||j<0||i>=rows||j>=cols||matrix[i][j]!=str[index]) return false;
char c = matrix[i][j];
matrix[i][j] = '#';
bool result = search(matrix,i+1,j,rows,cols,str,index+1)||
search(matrix,i-1,j,rows,cols,str,index+1)||
search(matrix,i,j-1,rows,cols,str,index+1)||
search(matrix,i,j+1,rows,cols,str,index+1);
matrix[i][j] = c;
return result;
}
};