力扣-牛客刷题 跳台阶

描述

一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个 n 级的台阶总共有多少种跳法(先后次序不同算不同的结果)。

数据范围:
要求:时间复杂度O(n): ,空间复杂度O(1):


class Solution:
    def jumpFloor(self, number):
        # write code here
        if number <= 0:
            return 0
        if number == 1 or number == 2:
            return number
        dp = [None for i in range(number+1)]
        dp[0] = 0
        dp[1] = 1
        dp[2] = 2

        for i in range(3, number+1):
            if i < 3:
                dp[i] = i
            else:
                dp[i] = dp[i - 1] + dp[i - 2]
        return dp[number]



if __name__ == "__main__":
    sol = Solution()
    print(sol.jumpFloor(7))

动态规划的典型题目

  1. 先处理边界值,在第0个台阶,跳法为无,在第1个台阶,跳法就是1,在第2个台阶,跳法就是2

  2. 在每一个台阶,其有可能是上一级台阶跳上来的,也可以是上上一节台阶跳上来的。

f ( i ) f(i) f(i)为在第i级台阶所具有的所有跳法 ,则 f ( i ) = f ( i − 1 ) + f ( i − 2 ) f(i) = f(i-1) + f(i-2) f(i)=f(i1)+f(i2)

其理解为: 如果固定这个节点是在第i-1个节点,跳一级台阶上来的,这次跳跃不会增加方法量, 那么其方法总量就是 f ( i − 1 ) f(i-1) f(i1);如果固定是从i-2个节点,跳两级上来的,这次跳跃不会增加方法量,那么总方法量就是 f ( i − 2 ) f(i-2) f(i2)。但是,我们并不知道具体怎么上来的,两种都有可能,所以总方法量就是 f ( i − 1 ) + f ( i − 2 ) f(i-1)+f(i-2) f(i1)+f(i2)

上面形成了状态转移方程。之后就好办了,处理完边界值,循环转移就可以了。

不过,要求空间复杂度为 O ( 1 ) O(1) O(1)

那么,就要有另一个版本了。



class Solutionv2(object):
    def jumpFloor_infer(self, number):
        # write code here
        if number <= 0:
            return 0
        if number == 1 or number == 2:
            return number
        dp = [None for i in range(3)]
        dp[0] = 0
        dp[1] = 1
        dp[2] = 2

        for i in range(3, number+1):
            if i < 3:
                dp[i] = i
            else:
                dp[i%3] = dp[(i - 1)%3] + dp[(i - 2)%3]
        return dp[number%3]


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

古承风

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值