论文阅读之《Jointly Predicating Predicates and Argumentsin Neural Semantic Role Labeling》-ACL2018

Motivation:

之前的语义角色标注都是基于BIO标签的模型,将srl任务看作是序列标注问题,一次预测一个谓词的全部论元span。另外,它需要假定gold predicates是给定的,且不能融合span级别的信息。所以该文章提出了一个end-to-end的方法,共同预测谓词、论元及他们之前的关系。是第一个不给定谓词基于span的srl模型(在不给定谓词达到sota,模型源于共指消解的模型coreference resolution)。

Introduction of task:

语义角色标注任务就是捕捉谓词和论元之间的关系,像谁对谁做了什么。“小明 打 小红”,那么“喜欢”是谓词,“小明”“小红”都是论元,其中小明是施事(ARG0),小红是受事(ARG1)。在现实生活场景中,谓词是没有的,所以srl任务往往会分为谓词预测、论元预测、关系预测等子任务。

Model:

首先,他们认为输入的句子中 全部的词都可能是谓词,全部的连续片段都有可能是论元。模型来决定每个predicate-argument对之间的关系,若他们没有关系则打上NULL标签。

形式化:给定X={w1,w2,……,wn},预测一组标注的谓词-论元-关系,Y是PAL的子集,其中P={w1,w2,……,wn}是谓词(也是所有的输入tokens),A={(wi,……wj)|1<=i<=j<=n}是全部的论元(也是全部连续的句子片段),L是一组语义角色标签(包括NULL label)。srl最后的输出是非空的关系{(p,a,l)是Y的子集且不为空}
计算条件概率:
条件概率
其中下面是可能的组合计分函数(论元一元得分,谓词一元得分,标签得分,:
计分函数
loss function:
在这里插入图片描述
Beam pruning:Ba 和Bp来存储候选的论元和谓词,他们的size被限制为λan和λpn,对于不在Ba和Bp中的谓词和论元,不参与标签得分函数的计算。

Neural Architecture:
  • Word-level contexts:底层将每个wi表示为预训练的word embedding 和character-based embedding的连接,xi =[WORDEMB(wi); CHARCNN(wi)].将xi作为m-层的双向LSTM(with highway connection)的输入获得每个词的词表示 ¯xi。
  • Argument and predicate representation:构造论元和谓词的上下文表示,对于论元的上下文表示包括四个部分g(a) =[¯xSTART(a); ¯xEND(a); xh(a); f(a)],其中,¯xSTART(a); ¯xEND(a)是BiLSTM中的输出,xh(a)是一个soft head表示,就是对span进行加权求和,需要先用bilstm的输出span算得一个权重e(a),然后再对原始输入span作一个加权求和。(一直没搞明白这个head,写出来终于……,哈哈哈,今天一天有这个收获足矣,softmax就是对加权求和之后对每个元素求得在和中的比例)。而f(a)就是span的宽度特征嵌入。
    计算soft head
  • 谓词表示就是位置Index上BiLSTM的输出。
    论元表示和谓词表示
  • Scoring计算得分:在得出的论元和谓词表示的基础之上,应用了前馈神经网络(a.k.a MLP, a.k.a FFNN)
    计算得分公式
  • 体系图由下而上看:
    在这里插入图片描述
    在这里插入图片描述

这里是直接用span表示直接预测SRL图,如果text span有关系,那么就独立预测他们之间的role。为了效率,使用了剪枝(beam pruning),最后的图就是预测的SRLroles和相关系的spans的union。这篇文章的模型与其它的基于BIO模型和semi-markov相比,优点:1)因为是独立地预测每个谓词和其论元的关系,所以,不同的谓词可以有相同的论元成分;2)span表示也可以产生在BIO中产生的token级别的表示

实验Settings
  • 在CoNLL2005和CoNLL2012两个数据集(基于span)上进行实验;
  • 使用了两个实验设置:给定谓词(可以像BIO一样,给定谓词来预测论元及其关系,输入的时候也输入gold_predicates,就是将Bp设置为gold predicate,而不需要预测)和end-to-end(输入只给tokenized的句子)
  • 使用F1 评测指标来评测元组(predicate, argument span, label)
  • 为提升性能,加了ELMo embedding。
结果
  • with gold predicates:WSJ和Brown是CoNLL2015的数据,一个是in-domain,一个是out-of-domain,在测试集上的结果。OntoNotes是CoNLL2012的数据集给定了谓词(POE的是Ensemble模型还有加了elmo的),Tan的是基于注意力的,和本篇文章是同一时期的,性能更好一些。

在这里插入图片描述

  • end-2-end:

在这里插入图片描述

分析:
  • beam pruning的有效性:
  • 长距离依存问题
  • 句法一致性
  • 全局一致性分析(涉及到一些srl的标注限制问题,如一个谓词标注的核心论元最多出现一次,有些符号不太清楚,问了下师兄,记录一下),文章的全局性不太好
    在这里插入图片描述
问题
  • 这里是计算论元表示、谓词表示之后再计算标签,pipeline system,是不是有错误累积?
  • 如何加EMLo的?(问下师姐们)

书读百遍,其义自见

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值