线性系统使用PD控制的可控性

摘要

前置知识

  劳斯-赫尔维茨稳定性判据(部分):

  1. 特征方程为 s 2 + a 1 s + a 2 s^2+a_1s+a_2 s2+a1s+a2 的二阶系统稳定的充要条件是各项系数为正。
  2. 特征方程为 s 3 + a 2 s 2 + a 1 s + a 0 s^3+a_2s^2+a_1s+a_0 s3+a2s2+a1s+a0 的三阶系统稳定的充要条件是各项系数为正,且 a 1 a 2 > a 0 a_1a_2>a_0 a1a2>a0

  不失一般性,可以将系统传递函数中分子和分母中最高项系数设为1,当两个系统串联时,如果不是1,可以修改控制器参数使两个系统等价。例如,下面的系统 G 1 ( s ) G_1(s) G1(s) 和控制器 D 1 ( s ) D_1(s) D1(s)
G 1 ( s ) = b 1 s + b 0 a 2 s 2 + a 1 s + a 0 D 1 ( s ) = k d s 2 + k p s + k i s \begin{aligned} G_1(s) =& \frac{b_1s+b_0}{a_2s^2+a_1s+a_0} \\ D_1(s) =& \frac{k_ds^2+k_ps+k_i}{s} \\ \end{aligned} G1(s)=D1(s)=a2s2+a1s+a0b1s+b0skds2+kps+ki
与下面的系统 G 2 ( s ) G_2(s) G2(s) 和控制器 D 2 ( s ) D_2(s) D2(s) 等价,即 G 1 ( s ) D 1 ( s ) = G 2 ( s ) D 2 ( s ) G_1(s)D_1(s)=G_2(s)D_2(s) G1(s)D1(s)=G2(s)D2(s)
G 2 ( s ) = s + b 0 / b 1 s 2 + a 1 / a 2 s + a 0 / a 2 D 2 ( s ) = b 1 a 2 k d s 2 + k p s + k i s \begin{aligned} G_2(s) =& \frac{s+b_0/b_1}{s^2+a_1/a_2s+a_0/a_2} \\ D_2(s) =& \frac{b_1}{a_2}\frac{k_ds^2+k_ps+k_i}{s} \\ \end{aligned} G2(s)=D2(s)=s2+a1/a2s+a0/a2s+b0/b1a2b1skds2+kps+ki

传递函数方法求二阶系统可控性

对含有一个零点的二阶系统
G ( s ) = s + b 0 s 2 + a 1 s + a 0 G(s)=\frac{s+b_0}{s^2+a_1s+a_0} G(s)=s2+a1s+a0s+b0
设计PID控制器
D ( s ) = k d s 2 + k p s + k i s D(s)=\frac{k_ds^2+k_ps+k_i}{s} D(s)=skds2+kps+ki
开环传递函数
D ( s ) G ( s ) = k d s 3 + ( k d b 0 + k p ) s 2 + ( k p b 0 + k i ) s + k i b 0 s 3 + a 1 s 2 + a 0 s D(s)G(s)=\frac{k_ds^3+(k_db_0+k_p)s^2+(k_pb_0+k_i)s+k_ib_0}{s^3+a_1s^2+a_0s} D(s)G(s)=s3+a1s2+a0skds3+(kdb0+kp)s2+(kpb0+ki)s+kib0
闭环传递函数
D ( s ) G ( s ) 1 + D ( s ) G ( s ) = B ( s ) A ( s ) \frac{D(s)G(s)}{1+D(s)G(s)}=\frac{B(s)}{A(s)} 1+D(s)G(s)D(s)G(s)=A(s)B(s)
的特征多项式为
A ( s ) = ( k d + 1 ) s 3 + ( a 1 + k d b 0 + k p ) s 2 + ( a 0 + k p b 0 + k i ) s + k i b 0 A(s) = (k_d+1)s^3+(a_1+k_db_0+k_p)s^2+(a_0+k_pb_0+k_i)s+k_ib_0 A(s)=(kd+1)s3+(a1+kdb0+kp)s2+(a0+kpb0+ki)s+kib0
所以可以通过调整PID参数来调整特征多项式的每一个系数。
使用PD控制时,开环传递函数和特征多项式分别为
D ( s ) G ( s ) = ( k d s + k p ) ( s + b 0 ) s 2 + a 1 s + a 0 A ( s ) = ( k d + 1 ) s 2 + ( k p + k d b 0 + a 1 ) s + ( k p b 0 + a 0 ) D(s)G(s)=\frac{(k_ds+k_p)(s+b_0)}{s^2+a_1s+a_0} \\ A(s)=(k_d+1)s^2+(k_p+k_db_0+a_1)s+(k_pb_0+a_0) D(s)G(s)=s2+a1s+a0(kds+kp)(s+b0)A(s)=(kd+1)s2+(kp+kdb0+a1)s+(kpb0+a0)
变量少约束多,但可以用线性规划的方法证明PD控制可以控制几乎所有二阶系统。例如取 b 1 = 1 , b 0 = − 1 , a 1 = − 3 , a 0 = 1 b_1=1,b_0=-1,a_1=-3,a_0=1 b1=1,b0=1,a1=3,a0=1 时,PD控制系数需要满足
{ k d + 1 > 0 − k p + 1 > 0 k p − k d − 3 > 0 or  { k d + 1 < 0 − k p + 1 < 0 k p − k d − 3 < 0 \left\{\begin{align*} & k_d+1 >0 \\ & -k_p+1 >0 \\ & k_p-k_d-3 >0 \end{align*}\right.\text{or } \left\{\begin{align*} & k_d+1 <0 \\ & -k_p+1 <0 \\ & k_p-k_d-3 <0 \end{align*}\right. kd+1>0kp+1>0kpkd3>0or  kd+1<0kp+1<0kpkd3<0
k p = − k d = 4 3 k_p=-k_d=\frac 43 kp=kd=34 时满足第2个条件。当 a 1 = − 2 a_1=-2 a1=2 时无解,但此时系统有相同的零极点。也就是说当系统有相同的零极点时,线性规划的方法可能求不出使闭环系统稳定的 k p , k d k_p,k_d kp,kd。有相同的零极点时,当系统
G ( s ) = s + z 0 ( s + p 0 ) ( s + p 1 ) G(s)=\frac{s+z_0}{(s+p_0)(s+p_1)} G(s)=(s+p0)(s+p1)s+z0
有相同的零极点 z 0 = p 0 z_0=p_0 z0=p0 时,闭环系统特征多项式为
A ( s ) = ( s + p 0 ) ( s + p 1 + k d s + k p ) A(s)=(s+p_0)(s+p_1+k_ds+k_p) A(s)=(s+p0)(s+p1+kds+kp)
系统是否可控只取决于这相同的零极点位于左半平面还是右半平面,并且可以看出PID与PD控制类似。类似的方法可以很简单地看出来不含零点的二阶系统可控。

反馈线性化方法求三阶系统可控性

反馈线性化方法基本原理见 非线性系统的反馈线性化
含有一个零点的三阶系统的相对阶为2,使用反馈线性化的方法将三阶系统转换成非线性系统标准型,也就是分解成内部动态和外部动态。
G ( s ) = b 1 s + b 0 s 3 + a 2 s 2 + a 1 s + a 0 G(s)=\frac{b_1s+b_0}{s^3+a_2s^2+a_1s+a_0} G(s)=s3+a2s2+a1s+a0b1s+b0
[ x ˙ 1 x ˙ 2 x ˙ 3 ] = [ 0 1 0 0 0 1 − a 0 − a 1 − a 2 ] [ x 1 x 2 x 3 ] + [ 0 0 1 ] u y = [ b 0 1 0 ] [ x 1 x 2 x 3 ] \begin{aligned} \begin{bmatrix} \dot x_1 \\ \dot x_2 \\ \dot x_3 \end{bmatrix} =& \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -a_0 & -a_1 & -a_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} +\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}u \\ y =& \begin{bmatrix} b_0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \end{aligned} x˙1x˙2x˙3 =y= 00a010a101a2 x1x2x3 + 001 u[b010] x1x2x3
取微分同胚变换
[ ξ 1 ξ 2 η ] = [ b 0 1 0 0 b 0 1 1 0 0 ] [ x 1 x 2 x 3 ] ,   [ x 1 x 2 x 3 ] = [ 0 0 1 1 0 − b 0 − b 0 1 b 0 2 ] [ ξ 1 ξ 2 η ] \begin{bmatrix} \xi_1 \\ \xi_2 \\ \eta \end{bmatrix}= \begin{bmatrix} b_0 & 1 & 0 \\ 0 & b_0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix},\ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}= \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & -b_0 \\ -b_0 & 1 & b_0^2 \end{bmatrix} \begin{bmatrix} \xi_1 \\ \xi_2 \\ \eta \end{bmatrix} ξ1ξ2η = b0011b00010 x1x2x3 ,  x1x2x3 = 01b00011b0b02 ξ1ξ2η
则变换后的状态方程为
ξ ˙ 1 = ξ 2 ξ ˙ 2 = ( a 2 b 0 − a 1 − b 0 2 ) ξ 1 + ( b 0 − a 2 ) ξ 2 + ( b 0 3 + a 1 b 0 − a 0 − a 2 b 0 2 ) η + u η ˙ = ξ 1 − b 0 η y = ξ 1 \begin{aligned} \dot\xi_1 =& \xi_2 \\ \dot\xi_2 =& (a_2b_0-a_1-b_0^2)\xi_1 +(b_0-a_2)\xi_2 +(b_0^3+a_1b_0-a_0-a_2b_0^2)\eta+u \\ \dot\eta =& \xi_1-b_0\eta \\ y =& \xi_1 \end{aligned} ξ˙1=ξ˙2=η˙=y=ξ2(a2b0a1b02)ξ1+(b0a2)ξ2+(b03+a1b0a0a2b02)η+uξ1b0ηξ1
b 0 > 0 b_0>0 b0>0 时,内部动态 η ˙ = ξ 1 − b 0 η \dot\eta = \xi_1-b_0\eta η˙=ξ1b0η 稳定,并且外部动态是一个二阶系统,将外部动态重写为
[ ξ ˙ 1 ξ ˙ 2 ] = [ 0 1 c 1 c 2 ] [ ξ 1 ξ 2 ] + [ 0 1 ] u + [ 0 c 3 ] η y = [ 1 0 ] [ ξ 1 ξ 2 ] \begin{aligned} \begin{bmatrix} \dot\xi_1 \\ \dot\xi_2 \end{bmatrix} =& \begin{bmatrix} 0 & 1 \\ c_1 & c_2 \end{bmatrix} \begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix} +\begin{bmatrix} 0 \\ 1 \end{bmatrix}u +\begin{bmatrix} 0 \\ c_3 \end{bmatrix}\eta \\ y =& \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix} \end{aligned} [ξ˙1ξ˙2]=y=[0c11c2][ξ1ξ2]+[01]u+[0c3]η[10][ξ1ξ2]
其中
c 1 = a 2 b 0 − a 1 − b 0 2 c 2 = b 0 − a 2 c 3 = b 0 3 + a 1 b 0 − a 0 − a 2 b 0 2 \begin{aligned} c_1 =& a_2b_0-a_1-b_0^2 \\ c_2 =& b_0-a_2 \\ c_3 =& b_0^3+a_1b_0-a_0-a_2b_0^2 \\ \end{aligned} c1=c2=c3=a2b0a1b02b0a2b03+a1b0a0a2b02
并且 η \eta η 可以看作是扰动。

u = − k p ξ 1 − k d ξ 2 u=-k_p\xi_1-k_d\xi_2 u=kpξ1kdξ2
并代入得
[ ξ ˙ 1 ξ ˙ 2 ] = [ 0 1 c 1 − k p c 2 − k d ] [ ξ 1 ξ 2 ] + [ 0 c 3 ] η \begin{bmatrix} \dot\xi_1 \\ \dot\xi_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ c_1-kp & c_2-k_d \end{bmatrix} \begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix} +\begin{bmatrix} 0 \\ c_3 \end{bmatrix}\eta [ξ˙1ξ˙2]=[0c1kp1c2kd][ξ1ξ2]+[0c3]η
其中系数矩阵的特征方程为
λ 2 + ( k d − c 2 ) λ + ( k p − c 1 ) = 0 \lambda^2 + (k_d-c_2)\lambda + (k_p-c_1)=0 λ2+(kdc2)λ+(kpc1)=0
k p k_p kp k d k_d kd 使两个特征根都位于左半平面即可使系统稳定。
  没有零点或有两个零点时可以用类似的方法分析。例如有两个零点时,输出方程变为
y = [ b 0 b 1 1 ] x ⃗ y=\begin{bmatrix} b_0 & b_1 & 1 \end{bmatrix}\vec x y=[b0b11]x
相对阶为1,所以取变换
[ ξ η 1 η 2 ] = [ b 0 b 1 1 1 0 0 0 1 0 ] [ x 1 x 2 x 3 ] ,   [ x 1 x 2 x 3 ] = [ 0 1 0 0 0 1 1 − b 0 − b 1 ] [ ξ η 1 η 2 ] \begin{bmatrix} \xi \\ \eta_1 \\ \eta_2 \end{bmatrix}= \begin{bmatrix} b_0 & b_1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix},\ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}= \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -b_0 & -b_1 \end{bmatrix} \begin{bmatrix} \xi \\ \eta_1 \\ \eta_2 \end{bmatrix} ξη1η2 = b010b101100 x1x2x3 ,  x1x2x3 = 00110b001b1 ξη1η2
[ ξ 1 ξ 2 η ] = [ b 0 b 1 1 − a 0 b 0 − a 1 b 1 − a 2 1 0 0 ] [ x 1 x 2 x 3 ] ,   [ x 1 x 2 x 3 ] = [ ] [ ξ 1 ξ 2 η ] \begin{bmatrix} \xi_1 \\ \xi_2 \\ \eta \end{bmatrix}= \begin{bmatrix} b_0 & b_1 & 1 \\ -a_0 & b_0-a_1 & b_1-a_2 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix},\ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}= \begin{bmatrix} \end{bmatrix} \begin{bmatrix} \xi_1 \\ \xi_2 \\ \eta \end{bmatrix} ξ1ξ2η = b0a01b1b0a101b1a20 x1x2x3 ,  x1x2x3 =[] ξ1ξ2η

ξ ˙ = ( b 1 − a 2 ) ξ + ( a 2 b 0 − b 1 b 0 − a 0 ) η 1 + ( a 2 b 1 − b 1 2 + b 0 − a 1 ) η 2 [ η ˙ 1 η ˙ 2 ] = [ 0 1 − b 0 − b 1 ] [ η 1 η 2 ] + [ 0 1 ] ξ \begin{aligned} \dot\xi =& (b_1-a_2)\xi+(a_2b_0-b_1b_0-a_0)\eta_1 +(a_2b_1-b_1^2+b_0-a_1)\eta_2 \\ \begin{bmatrix} \dot\eta_1 \\ \dot\eta_2 \end{bmatrix} =& \begin{bmatrix} 0 & 1 \\ -b_0 & -b_1 \end{bmatrix} \begin{bmatrix} \eta_1 \\ \eta_2 \end{bmatrix}+ \begin{bmatrix} 0 \\ 1 \end{bmatrix}\xi \\ \end{aligned} ξ˙=[η˙1η˙2]=(b1a2)ξ+(a2b0b1b0a0)η1+(a2b1b12+b0a1)η2[0b01b1][η1η2]+[01]ξ
ξ ˙ 1 = ξ 2 − u ξ ˙ 2 = η ˙ = y = ξ 1 \begin{aligned} \dot\xi_1 =& \xi_2-u \\ \dot\xi_2 =& \\ \dot\eta =& \\ y =& \xi_1 \end{aligned} ξ˙1=ξ˙2=η˙=y=ξ2uξ1

关于最小相位的补充说明

  最小相位线性系统系统的一个特点是不含右半平面的零极点,从线性系统的反馈线性化例子中可以看出,线性系统的内部动态稳定时,内部动态不含右半平面零点,可以类比内部动态稳定的非线性系统称作最小相位系统。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值