机器学习练习——线性回归

这篇博客介绍了如何运用线性回归解决实际问题,通过吴恩达的机器学习课程实践,利用给定的城市人口数据来预测餐馆利润,通过计算代价函数和应用梯度下降进行模型训练。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一. 单变量线性回归
问题背景:假如你是餐馆老板,已知若干城市中人口和利润的数据(ex1data1.txt),用线性回归方法计算该去哪个城市发展。

主函数:

%Step01 加载数据 
%X是取exdata1.txt 文件的第一列数据
%Y是取exdate1.txt文件的第二列数据
data = load('ex1data1.txt');
X = data(:,1); 
y = data(:,2);
m = length(y);      %保存样本数据数量

%Step02 绘图可视化数据 数据用红X表示 ‘rx‘;大小为10,设置X/Y轴标签
figure;     % 
plot(X,y,'rx','MarkerSize',10);
xlabel('城市人口,单位:/万人');
ylabel('利润,单位:/万元');

X = [ones(m,1),data(:,1)];      %增加一列,全赋值为1
theta = zeros(2,1)     %初始化拟合参数 定义一个2行1列的0矩阵
num_iters = 1500;       %迭代次数
alpha = 0.01;       %学习率
J = computeCost(X,y,theta)    %计算并显示初始成本

%用梯度下降求最优解 并将函数画在图上
theta = gradientDescent(X,y,theta,alpha,num_iters);
hold on;
plot(X(:, 2), X*theta, '-');


%对代价函数进行可视化分析

%linspace(x1,x2,N)
%功 能:用于产生x1,x2之间的N点行矢量,相邻数据跨度相同。
%其中x1、x2、N分别为起始值、终止值、元素个数。若缺省N&#x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SUNNY小飞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值