2013,中国台湾数学奥林匹克训练营——0

求正整数数对 ( x , y ) (x,y) (x,y) ,满足 x > y x>y x>y

( x − y ) x y = x y y x . (x-y)^{xy}=x^yy^x. (xy)xy=xyyx.

(2013,中国台湾数学奥林匹克训练营)

解法1:


( x , y ) = d , x = d v , y = d t , ( v , t ) = 1. (x,y)=d ,x=dv,y=dt,(v,t)=1. (x,y)=d,x=dv,y=dt,(v,t)=1.
则:
d x y − x − y ( v − t ) = v y t x d^{xy-x-y}(v-t)=v^yt^x dxyxy(vt)=vytx
⇒ d ( x − 1 ) ( y − 1 ) − 1 ( v − t ) x y = v y t x \Rightarrow d^{(x-1)(y-1)-1}(v-t)^{xy}=v^yt^x d(x1)(y1)1(vt)xy=vytx
( x − 1 ) ( y − 1 ) − 1 = − 1 (x-1)(y-1)-1=-1 (x1)(y1)1=1
⇒ x = 1 ( 舍 去 ) 或 y = 1 \Rightarrow x=1(舍去)或y=1 x=1()y=1
⇒ ( x − 1 ) x = x \Rightarrow (x-1)^x=x (x1)x=x
⇒ 无 正 整 数 解 \Rightarrow 无正整数解


( x − 1 ) ( y − 1 ) − 1 ≥ 0 (x-1)(y-1)-1\geq0 (x1)(y1)10 ,则由
( v − t , v ) = 1 , ( v − t , t ) = 1 (v-t,v)=1,(v-t,t)=1 (vt,v)=1,(vt,t)=1,
( v − t ) x y ∣ v y t x (v-t)^{xy}|v^yt^x (vt)xyvytx , 知
v − t = 1 v-t=1 vt=1
d d ( t + 1 ) t − ( 2 t + 1 ) = ( t + 1 ) t t t + 1 d^{d(t+1)t-(2t+1)}=(t+1)^tt^{t+1} dd(t+1)t(2t+1)=(t+1)ttt+1.

t t t 由素因子,则对 t t t 的任一素因子 p p p ,设
p α ∣ ∣ t , p β ∣ ∣ d p^{\alpha}||t,p^{\beta}||d pαt,pβd ( α 、 β ≥ 1 ) . (\alpha、\beta\geq1). (αβ1).
β [ d ( t + 1 ) t − 2 t − 1 ] = α ( t + 1 ) ⋯ ① \beta[d(t+1)t-2t-1]=\alpha (t+1) \cdots ① β[d(t+1)t2t1]=α(t+1)
⇒ ( β d t − α ) ( t + 1 ) = ( 2 t + 1 ) β . \Rightarrow (\beta dt-\alpha)(t+1)=(2t+1)\beta. (βdtα)(t+1)=(2t+1)β.
( t + 1 , 2 t + 1 ) = 1 , (t+1,2t+1)=1, (t+1,2t+1)=1, ( t + 1 ) ∣ β . (t+1)|\beta. (t+1)β.
由式①知
β ∣ α ( t + 1 ) \beta |\alpha(t+1) βα(t+1)
⇒ β ≤ α ( t + 1 ) \Rightarrow \beta \leq \alpha(t+1) βα(t+1)
⇒ ( β d t − α ) ( t + 1 ) ≤ ( 2 t + 1 ) α ( t + 1 ) \Rightarrow (\beta dt-\alpha)(t+1)\leq(2t+1)\alpha(t+1) (βdtα)(t+1)(2t+1)α(t+1)
⇒ β d t ≤ 2 ( t + 1 ) α ≤ 2 β α \Rightarrow \beta dt \leq2(t+1)\alpha\leq2\beta\alpha βdt2(t+1)α2βα
⇒ 2 p α ≤ d t ≤ 2 α ⇒ p α ≤ α \Rightarrow 2p^{\alpha}\leq dt\leq2\alpha\Rightarrow p^{\alpha}\leq\alpha 2pαdt2αpαα
⇒ 无 正 整 数 解 \Rightarrow 无正整数解 .
矛盾.

因此 t = 1 ⇒ d 2 d − 3 = 2 ⇒ d = 2 t=1\Rightarrow d^{2d-3}=2\Rightarrow d=2 t=1d2d3=2d=2
( x , y ) = ( 4 , 2 ) . (x,y)=(4,2). (x,y)=(4,2).



解法2:

p ∣ x p|x px , p p p 为素数,则
p ∣ ( x − y ) ⇒ p ∣ y . p|(x-y) \Rightarrow p|y. p(xy)py.
因为 x ≥ 2 x\geq2 x2 ,所以,这样 p p p 不存在.
y ≥ 2 y\geq 2 y2.
类似地,若 p ∣ y p|y py ,则 p ∣ x p|x px .
不妨设 x = p 1 α 1 p 2 α 2 ⋯ p k α k x=p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_k^{\alpha_k} x=p1α1p2α2pkαk y = p 1 β 1 p 2 β 2 ⋯ p k β k y=p_1^{\beta_1}p_2^{\beta_2}\cdots p_k^{\beta_k} y=p1β1p2β2pkβk .
若存在正整数 i i i ,使得 α i &lt; β i \alpha_i&lt;\beta_i αi<βi ,则考虑 p i p_i pi 在方程两边的幂次,得
α i x y = α i y + β i x &lt; β i ( x + y ) \alpha_ixy = \alpha_iy+\beta _ix&lt;\beta_i(x+y) αixy=αiy+βix<βi(x+y)
&lt; y ( x + y ) &lt; 2 x y &lt;y(x+y)&lt;2xy <y(x+y)<2xy
⇒ α i = 1. \Rightarrow \alpha_i=1. αi=1.

x y = y + β i x &lt; x + β i x xy=y+\beta_ix&lt;x+\beta_ix xy=y+βix<x+βix
⇒ β i + 1 &gt; y ≥ p i β i ≥ 2 β i \Rightarrow \beta_i+1&gt;y\geq p_i^{\beta_i}\geq2^{\beta_i} βi+1>ypiβi2βi
⇒ \Rightarrow 无解.
于是,对于任意整数 i ( 1 ≤ i ≤ k ) i(1\leq i\leq k) i(1ik) , 均有
α i ≥ β i ⇒ y ∣ x \alpha_i\geq\beta_i\Rightarrow y|x αiβiyx.

x = t y x=ty x=ty ( t ≥ 2 ) (t\geq2) (t2).则
( t − 1 ) t y 2 y t y 2 = t y y y + t y (t-1)^{ty^2}y^{ty^2}=t^yy^{y+ty} (t1)ty2yty2=tyyy+ty
⇒ ( t − 1 ) t y 2 y t y 2 − y − t y = t y \Rightarrow (t-1)^{ty^2}y^{ty^2-y-ty}=t^y (t1)ty2yty2yty=ty.
t ≥ 3 t\geq 3 t3 ,则
( t − 1 ) t y 2 = [ ( t − 1 ) y ] t y &gt; t t y &gt; t y (t-1)^{ty^2}=[(t-1)^y]^{ty}&gt;t^{ty}&gt;t^y (t1)ty2=[(t1)y]ty>tty>ty.
y t y 2 − y − t y ≥ 1 y^{ty^2-y-ty}\geq 1 yty2yty1 ,矛盾.
t = 2 ⇒ y 2 y 2 − 3 y = 2 y t=2 \Rightarrow y^{2y^2-3y}=2^y t=2y2y23y=2y.
⇒ y 2 y − 3 = 2 ⇒ y = 2 , x = 4 \Rightarrow y^{2y-3}=2 \Rightarrow y=2,x=4 y2y3=2y=2x=4.

综上, ( x , y ) = ( 4 , 2 ) (x,y)=(4,2) (x,y)=(4,2).xq

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值