已知正实数 a 、 b 、 c a、b、c a、b、c 满足 a b + b c + c a ≤ 3 a b c ab+bc+ca\leq3abc ab+bc+ca≤3abc. 证明:
a 2 + b 2 a + b + b 2 + c 2 b + c + c 2 + a 2 c + a + 3 ≤ 2 ( a + b + b + c + c + a ) . \sqrt{\frac{a^2+b^2}{a+b}}+\sqrt{\frac{b^2+c^2}{b+c}}+\sqrt{\frac{c^2+a^2}{c+a}}+3\leq\sqrt2(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}). a+ba2+b2+b+cb2+c2+c+ac2+a2+3≤2(a+b+b+c+c+a).
证明
\qquad
由幂平均不等式得
\qquad
2
⋅
a
+
b
=
2
a
b
a
+
b
⋅
1
2
(
2
+
a
2
+
b
2
a
b
)
\sqrt2\cdot\sqrt{a+b}=2\sqrt{\frac{ab}{a+b}}\cdot\sqrt{\frac12(2+\frac{a^2+b^2}{ab})}
2⋅a+b=2a+bab⋅21(2+aba2+b2)
\qquad
\qquad
\quad
\qquad
≥
2
a
b
a
+
b
⋅
1
2
(
2
+
a
2
+
b
2
a
b
)
=
2
a
b
a
+
b
+
a
2
+
b
2
a
+
b
.
\geq2\sqrt{\frac{ab}{a+b}}\cdot\frac12(\sqrt2+\sqrt{\frac{a^2+b^2}{ab}})=\sqrt{\frac{2ab}{a+b}}+\sqrt{\frac{a^2+b^2}{a+b}}.
≥2a+bab⋅21(2+aba2+b2)=a+b2ab+a+ba2+b2.
\qquad 同理, 2 ⋅ b + c ≥ 2 b c b + c + b 2 + c 2 b + c , 2 ⋅ c + a ≥ 2 c a c + a + b 2 + c 2 c + a \sqrt2\cdot\sqrt{b+c}\geq\sqrt{\frac{2bc}{b+c}}+\sqrt{\frac{b^2+c^2}{b+c}},\sqrt2\cdot\sqrt{c+a}\geq\sqrt{\frac{2ca}{c+a}}+\sqrt{\frac{b^2+c^2}{c+a}} 2⋅b+c≥b+c2bc+b+cb2+c2,2⋅c+a≥c+a2ca+c+ab2+c2
\qquad
再由算术平均和调和平均不等式得
\qquad
2
a
b
a
+
b
+
2
b
c
b
+
c
+
2
c
a
c
+
a
≥
3
3
(
a
+
b
2
a
b
)
2
+
(
b
+
c
2
b
c
)
2
+
(
c
+
a
2
c
a
)
2
=
3
3
a
b
c
a
b
+
b
c
+
c
a
≥
3.
\sqrt{\frac{2ab}{a+b}}+\sqrt{\frac{2bc}{b+c}}+\sqrt{\frac{2ca}{c+a}}\geq3\sqrt{\frac3{(\sqrt{\frac{a+b}{2ab}})^2+(\sqrt{\frac{b+c}{2bc}})^2+(\sqrt{\frac{c+a}{2ca}})^2}}=3\sqrt{\frac{3abc}{ab+bc+ca}}\geq3.
a+b2ab+b+c2bc+c+a2ca≥3(2aba+b)2+(2bcb+c)2+(2cac+a)23=3ab+bc+ca3abc≥3.
\qquad 于是原不等式成立.