第52届IMO预选题

\qquad 设正实数 a 、 b 、 c a、b、c abc 满足
\qquad min ⁡ { a + b , b + c , c + a } > 2 , a 2 + b 2 + c 2 = 3 \min\{a+b,b+c,c+a\}>\sqrt2,a^2+b^2+c^2=3 min{a+b,b+c,c+a}>2 a2+b2+c2=3.证明:

a ( b + c − a ) 2 + b ( c + a − b ) 2 + c ( a + b − c ) 2 ≥ 3 ( a b c ) 2 . \frac a{(b+c-a)^2}+\frac b{(c+a-b)^2}+\frac c{(a+b-c)^2}\geq\frac3{(abc)^2}. (b+ca)2a+(c+ab)2b+(a+bc)2c(abc)23.

\qquad 证明

\qquad ∑ f ( a , b , c ) = f ( a , b , c ) + f ( b , c , a ) + f ( c , a , b ) \sum f(a,b,c)=f(a,b,c)+f(b,c,a)+f(c,a,b) f(a,b,c)=f(a,b,c)+f(b,c,a)+f(c,a,b) 其中,“ ∑ \sum ”表示轮换对称和.

\qquad b + c &gt; 2 ⇒ b 2 + c 2 &gt; 1 ⇒ a 2 = 3 − ( b 2 + c 2 ) &lt; 2 b+c&gt;\sqrt2\Rightarrow b^2+c^2&gt;1\Rightarrow a^2=3-(b^2+c^2)&lt;2 b+c>2 b2+c2>1a2=3(b2+c2)<2

\qquad ⇒ a &lt; 2 &lt; b + c ⇒ b + c − a &gt; 0. \Rightarrow a&lt;\sqrt2&lt;b+c\Rightarrow b+c-a&gt;0. a<2 <b+cb+ca>0.

\qquad 同理, c + a − b &gt; 0 , a + b − c &gt; 0. c+a-b&gt;0,a+b-c&gt;0. c+ab>0,a+bc>0.

\qquad 由幂平均不等式得 a 5 + b 5 + c 5 ≥ 3. a^5+b^5+c^5\geq3. a5+b5+c53.

\qquad 不妨假设 a ≥ b ≥ c . a\geq b\geq c. abc.

\qquad 因此,只需证 ∑ a 3 b 2 c 2 ( b + c − a ) 2 ≥ ∑ a 5 , \sum\frac{a^3b^2c^2}{(b+c-a)^2}\geq\sum a^5, (b+ca)2a3b2c2a5,

\qquad ∑ a 3 ( b + c − a ) 2 { ( b c ) 2 − [ a ( b + c − a ) ] 2 } ≥ 0. ⋯ ① \sum\frac{a^3}{(b+c-a)^2}\{(bc)^2-[a(b+c-a)]^2\}\geq0.\cdots① (b+ca)2a3{(bc)2[a(b+ca)]2}0.

\qquad 对于正数 x 、 y 、 z x、y、z xyz 由于

\qquad ( y z ) 2 − [ x ( y + z − x ) ] 2 (yz)^2-[x(y+z-x)]^2 (yz)2[x(y+zx)]2 y z − x ( y + z − x ) = ( x − y ) ( x − z ) yz-x(y+z-x)=(x-y)(x-z) yzx(y+zx)=(xy)(xz)的符号相同,则式①中关于 a 、 c a、c ac 的项非负.

\qquad 因此,只需证明关于 a 、 b a、b ab 的项之和非负,即只需证

\qquad a 3 ( b + c − a ) 2 ( a − b ) ( a − c ) [ b c + a ( b + c − a ) ] \frac{a^3}{(b+c-a)^2}(a-b)(a-c)[bc+a(b+c-a)] (b+ca)2a3(ab)(ac)[bc+a(b+ca)]

\qquad ≥ b 3 ( a + c − b ) 2 ( a − b ) ( b − c ) [ a c + b ( a + c − b ) ] . \geq\frac{b^3}{(a+c-b)^2}(a-b)(b-c)[ac+b(a+c-b)]. (a+cb)2b3(ab)(bc)[ac+b(a+cb)].

\qquad 因为 a 3 ≥ b 3 &gt; 0 , 0 &lt; b + c − a ≤ a + c − b , a − c ≥ b − c ≥ 0 , a^3\geq b^3&gt;0,0&lt;b+c-a\leq a+c-b,a-c\geq b-c\geq0, a3b3>0,0<b+caa+cb,acbc0,

\qquad 所以只需证

\qquad a b + a c + b c − a 2 b + c − a ≥ a b + a c + b c − b 2 c + a − b \frac{ab+ac+bc-a^2}{b+c-a}\geq\frac{ab+ac+bc-b^2}{c+a-b} b+caab+ac+bca2c+abab+ac+bcb2

\qquad b + c − a b+c-a b+ca c + a − b c+a-b c+ab 均为整数,于是只需证

( c + a − b ) ( a b + a c + b c − a 2 ) ≥ ( b + c − a ) ( a n + b c + c a − b 2 ) , (c+a-b)(ab+ac+bc-a^2)\geq(b+c-a)(an+bc+ca-b^2), (c+ab)(ab+ac+bca2)(b+ca)(an+bc+cab2),

\qquad ( a − b ) ( 2 a b − a 2 − b 2 + a c + b c ) ≥ 0. (a-b)(2ab-a^2-b^2+ac+bc)\geq0. (ab)(2aba2b2+ac+bc)0.

\qquad 由于 a ≥ b a\geq b ab,则只需证明 c ( a + b ) ≥ ( a − b ) 2 . c(a+b)\geq(a-b)^2. c(a+b)(ab)2.

\qquad 结合 c &gt; a − b ≥ 0 , a + b &gt; a − b ≥ 0 , c&gt;a-b\geq0,a+b&gt;a-b\geq0, c>ab0,a+b>ab0,

\qquad 知上述不等式成立.

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值