求所有的素数 p p p ,使得
p 2 ∣ ∑ k = 1 p − 1 k 2 p + 1 p^2|\sum_{k=1}^{p-1}k^{2p+1} p2∣k=1∑p−1k2p+1
解:
由于 2 2 ̸ ∣ 1 2^2 \not |1 22̸∣1 , 故 p = 2 p=2 p=2 不满足条件.
以下设 p p p 为奇素数.
对 k = 1 , 2 , ⋯   , p − 1 2 , k=1,2,\cdots,\frac{p-1}2, k=1,2,⋯,2p−1, 由费马小定理知
k 2 p ≡ k 2 ( m o d p ) k^{2p}\equiv k^2\pmod p k2p≡k2(modp).
故
k
2
p
+
1
+
(
p
−
k
)
2
p
+
1
≡
k
2
p
+
1
+
(
2
p
+
1
)
p
k
2
p
−
k
2
p
+
1
k^{2p+1}+(p-k)^{2p+1}\equiv k^{2p+1}+(2p+1)pk^{2p}-k^{2p+1}
k2p+1+(p−k)2p+1≡k2p+1+(2p+1)pk2p−k2p+1
≡
p
k
2
p
≡
p
k
2
(
m
o
d
p
2
)
.
\equiv pk^{2p}\equiv pk^2\pmod {p^2}.
≡pk2p≡pk2(modp2).
求和知:
∑ k = 1 p − 1 k 2 p + 1 ≡ p ∑ k − 1 p − 1 2 k 2 = p 2 ⋅ p 2 − 1 24 ( m o d p 2 ) . \sum_{k=1}^{p-1}k^{2p+1}\equiv p\sum_{k-1}^{\frac {p-1}2}k^2=p^2\cdot\frac{p^2-1}{24}\pmod{p^2}. k=1∑p−1k2p+1≡pk−1∑2p−1k2=p2⋅24p2−1(modp2).
当且仅当 24 ∣ ( p 2 − 1 ) \quad24\mid(p^2-1) 24∣(p2−1) 时, p 2 ∣ ∑ k = 1 p − 1 k 2 p + 1 . p^2\mid\sum_{k=1}^{p-1}k^{2p+1}. p2∣k=1∑p−1k2p+1.
显然, p ̸ = 3. \quad p\not=3. p̸=3.
当 p ≥ 5 \quad p\geq5 p≥5 ,时
p 2 − 1 = ( p + 1 ) ( p − 1 ) p^2-1=(p+1)(p-1) p2−1=(p+1)(p−1) 必为3和8的倍数,
故 24 ∣ ( p 2 − 1 ) \quad24\mid(p^2-1) 24∣(p2−1).
综上,所求 p p p 为一切大于3 的素数.