中等数学-2015-2-解析几何中的最值问题-6

\qquad 过椭圆 x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) \frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0) a2x2+b2y2=1(a>b>0) 的右焦点 F F F 作两条垂直的弦 A B 、 C D . AB、CD. ABCD. A B 、 C D AB、CD ABCD 的中点分别为 M 、 N M、N MN.
\qquad (1)证明:直线 M N MN MN 比过定点,并求出此定点;
\qquad (2)若弦 A B 、 C D AB、CD ABCD 的斜率均存在,求 △ F M N \triangle FMN FMN 面积最大值。


\qquad (1)证明 \qquad 当直线 A B AB AB 的斜率存在且不为 0 0 0时,设其为 k k k ,则 l C D l_{CD} lCD的斜率为 − 1 k -\frac 1k k1.
\qquad l A B : y = k ( x − c ) . l_{AB}:y=k(x-c). lAB:y=k(xc).
\qquad 带入椭圆方程 b 2 x 2 + a 2 y 2 − a 2 b 2 = 0 b^2x^2+a^2y^2-a^2b^2=0 b2x2+a2y2a2b2=0 ,整理得
( b 2 + a 2 k 2 ) x 2 − 2 k 2 a 2 c x + a 2 ( k 2 c 2 − b 2 ) = 0 \qquad (b^2+a^2k^2)x^2-2k^2a^2cx+a^2(k^2c^2-b^2)=0 (b2+a2k2)x22k2a2cx+a2(k2c2b2)=0
\qquad 此方程有两个实数根 x 1 、 x 2 x_1、x_2 x1x2.
\qquad 由韦达定理得
\qquad x M = k 2 a 2 c b 2 + a 2 k 2 x_M=\frac{k^2a^2c}{b^2+a^2k^2} xM=b2+a2k2k2a2c,
\qquad y M = k ( x M − c ) = k ( k 2 a 2 c b 2 + a 2 k 2 − c ) = − b 2 c k b 2 + a 2 k 2 y_M=k(x_M-c)=k(\frac{k^2a^2c}{b^2+a^2k^2}-c)=-\frac{b^2ck}{b^2+a^2k^2} yM=k(xMc)=k(b2+a2k2k2a2cc)=b2+a2k2b2ck.
\qquad M ( k 2 b 2 c b 2 + a 2 k 2 , − b 2 c k b 2 + a 2 k 2 ) M(\frac{k^2b^2c}{b^2+a^2k^2},-\frac{b^2ck}{b^2+a^2k^2}) M(b2+a2k2k2b2c,b2+a2k2b2ck).
\qquad 类似地,将 k k k 换成 − 1 k , -\frac1k, k1
\qquad N ( a 2 c b 2 k 2 + a 2 , b 2 c k b 2 k 2 + a 2 ) . N(\frac{a^2c}{b^2k^2+a^2},\frac{b^2ck}{b^2k^2+a^2}). N(b2k2+a2a2c,b2k2+a2b2ck).
\qquad k 2 ̸ = 1 k^2\not=1 k2̸=1 ,即 k ̸ = ± 1 k\not=\pm1 k̸=±1 时,直线 M N MN MN 的斜率为
\qquad k M N = − b 2 c k b 2 + a 2 k 2 − b 2 c k b 2 k 2 + a 2 k 2 a c b 2 + a 2 k 2 − a 2 c b 2 k 2 + a 2 = − ( a 2 + b 2 ) k ( k 2 − 1 ) a 2 . k_{MN}=\dfrac{-\frac{b^2ck}{b^2+a^2k^2}-\frac{b^2ck}{b^2k^2+a^2}}{\frac{k^2ac}{b^2+a^2k^2}-\frac{a^2c}{b^2k^2+a^2}}=-\frac{(a^2+b^2)k}{(k^2-1)a^2}. kMN=b2+a2k2k2acb2k2+a2a2cb2+a2k2b2ckb2k2+a2b2ck=(k21)a2(a2+b2)k.


\qquad l M N : y − b 2 c k b 2 k 2 + a 2 = − ( a 2 + b 2 ) k ( k 2 − 1 ) a 2 ( x − a 2 c b 2 k 2 + a 2 ) l_{MN}:y-\frac{b^2ck}{b^2k^2+a^2}=-\frac{(a^2+b^2)k}{(k^2-1)a^2}(x-\frac{a^2c}{b^2k^2+a^2}) lMN:yb2k2+a2b2ck=(k21)a2(a2+b2)k(xb2k2+a2a2c)
\qquad ⇒ y = − ( a 2 + b 2 ) k ( k 2 − 1 ) a 2 ( x − a 2 c a 2 + b 2 ) \Rightarrow y=-\frac{(a^2+b^2)k}{(k^2-1)a^2}(x-\frac{a^2c}{a^2+b^2}) y=(k21)a2(a2+b2)k(xa2+b2a2c)
\qquad ⇒ \Rightarrow 直线 M N MN MN 经过定点 ( a 2 c a 2 + b 2 , 0 ) . (\dfrac{a^2c}{a^2+b^2},0). (a2+b2a2c,0).
\qquad k 2 = 1 k^2=1 k2=1,即 k = ± 1 k=\pm1 k=±1 时,点 M 、 N M、N MN 的横坐标均为 ( a 2 c a 2 + b 2 , 0 ) (\dfrac{a^2c}{a^2+b^2},0) (a2+b2a2c,0).
\qquad 当直线 A B AB AB 的斜率为 0 0 0 或者不存在时, l M N : y = 0 l_{MN}:y=0 lMN:y=0,也经过定点 ( a 2 c a 2 + b 2 , 0 ) . (\dfrac{a^2c}{a^2+b^2},0). (a2+b2a2c,0).
\qquad 综上,直线 M N MN MN 经过定点 E ( a 2 c a 2 + b 2 , 0 ) . E(\dfrac{a^2c}{a^2+b^2},0). E(a2+b2a2c,0).



\qquad (2) \qquad △ F M N \triangle FMN FMN 的面积最大时,直线 A B AB AB 的斜率一定存在.
\qquad 由对称性,不妨设 k > 0 k>0 k>0 ,并令
\qquad k = tan ⁡ θ ( 0 &lt; θ ≤ π 2 ) . k=\tan\theta(0&lt;\theta\leq\frac\pi2). k=tanθ(0<θ2π).
\qquad 因为 ∣ E F ∣ = c − a 2 c a 2 + c 2 = b 2 c d a 2 + b 2 |EF|=c-\frac{a^2c}{a^2+c^2}=\frac{b^2c}{da^2+b^2} EF=ca2+c2a2c=da2+b2b2c,且 a 2 = b 2 + c 2 a^2=b^2+c^2 a2=b2+c2,所以, △ F M N \triangle FMN FMN 的面积
\qquad S = 1 2 ⋅ b 2 c a 2 + b 2 ∣ y M − y N ∣ S=\dfrac12\cdot\dfrac{b^2c}{a^2+b^2}|y_M-y_N| S=21a2+b2b2cyMyN
>
\qquad = 1 2 ⋅ b 2 c a 2 + b 2 ∣ b 2 c k b 2 k 2 + a 2 + b 2 c k b 2 + a 2 k 2 ∣ =\dfrac12\cdot\dfrac{b^2c}{a^2+b^2}|\dfrac{b^2ck}{b^2k^2+a^2}+\dfrac{b^2ck}{b^2+a^2k^2}| =21a2+b2b2cb2k2+a2b2ck+b2+a2k2b2ck
>
\qquad = b 4 c 2 k ( k 2 + 1 ) 2 ( b 2 k 2 + a 2 ) ( b 2 + a 2 k 2 ) =\dfrac{b^4c^2k(k^2+1)}{2(b^2k^2+a^2)(b^2+a^2k^2)} =2(b2k2+a2)(b2+a2k2)b4c2k(k2+1)
>
\qquad = b 4 c 2 sin ⁡ θ ⋅ cos ⁡ θ 2 ( b 2 sin ⁡ 2 θ + a 2 cos ⁡ 2 θ ) ( b 2 cos ⁡ 2 θ + a 2 sin ⁡ 2 θ ) =\dfrac{b^4c^2\sin\theta\cdot\cos\theta}{2(b^2\sin^2\theta+a^2\cos^2\theta)(b^2\cos^2\theta+a^2\sin^2\theta)} =2(b2sin2θ+a2cos2θ)(b2cos2θ+a2sin2θ)b4c2sinθcosθ
>
\qquad = b 4 c 2 sin ⁡ θ ⋅ cos ⁡ θ 2 ( b 2 + c 2 cos ⁡ 2 θ ) ( b 2 + c 2 sin ⁡ 2 θ ) =\dfrac{b^4c^2\sin\theta\cdot\cos\theta}{2(b^2+c^2\cos^2\theta)(b^2+c^2\sin^2\theta)} =2(b2+c2cos2θ)(b2+c2sin2θ)b4c2sinθcosθ
>
\qquad = b 4 c 2 sin ⁡ θ ⋅ cos ⁡ θ 2 ( a 2 b 2 + c 4 sin ⁡ 2 θ ⋅ cos ⁡ 2 θ ) =\dfrac{b^4c^2\sin\theta\cdot\cos\theta}{2(a^2b^2+c^4\sin^2\theta\cdot\cos^2\theta)} =2(a2b2+c4sin2θcos2θ)b4c2sinθcosθ
>
\qquad = b 4 c 2 2 ( c 4 sin ⁡ θ ⋅ cos ⁡ θ + a 2 b 2 sin ⁡ θ ⋅ cos ⁡ θ ) . =\dfrac{b^4c^2}{2(c^4\sin\theta\cdot\cos\theta+\frac{a^2b^2}{\sin\theta\cdot\cos\theta})}. =2(c4sinθcosθ+sinθcosθa2b2)b4c2.


\qquad f ( θ ) = c 4 sin ⁡ θ ⋅ cos ⁡ θ + a 2 b 2 sin ⁡ θ ⋅ cos ⁡ θ f(\theta)=c^4\sin\theta\cdot\cos\theta+\dfrac{a^2b^2}{\sin\theta\cdot\cos\theta} f(θ)=c4sinθcosθ+sinθcosθa2b2.
>
\qquad f ( θ ) = 1 2 c 4 sin ⁡ 2 θ + 2 a 2 b 2 sin ⁡ 2 θ f(\theta)=\dfrac12c^4\sin2\theta+\dfrac{2a^2b^2}{\sin2\theta} f(θ)=21c4sin2θ+sin2θ2a2b2
>
\qquad g ( t ) = 1 2 c 4 t + 2 a 2 b 2 t ( 0 &lt; t ≤ 1 ) . g(t)=\dfrac12c^4t+\dfrac{2a^2b^2}{t}(0&lt;t\leq1). g(t)=21c4t+t2a2b2(0<t1).
>
\qquad g ( t ) = 1 2 c 3 t + 2 a 2 b 2 t ( t &gt; o ) g(t)=\frac12c^3t+\frac{2a^2b^2}t(t&gt;o) g(t)=21c3t+t2a2b2(t>o) 在区间 ( 0 , 2 a b c 2 ] \left(0,\frac{2ab}{c^2}\right] (0,c22ab] 上单调递减,在区间 [ 2 a b c 2 , + ∞ ) \left[\frac{2ab}{c^2},+\infty\right) [c22ab,+) 上单调递增.

\qquad (i)当 2 a b c 2 ≥ 1 \frac{2ab}{c^2}\geq1 c22ab1,即 b &lt; a ≤ ( 2 + 1 ) b b&lt;a\leq(\sqrt2+1)b b<a(2 +1)b 时, g ( t ) g(t) g(t) 在区间 ( 0 , 1 ] \left(0,1\right] (0,1] 上单调递减.
\qquad 因此, g ( t ) g(t) g(t) 的最小值为
\qquad g ( 1 ) = 1 2 c 4 + 2 a 2 b 2 g(1)=\frac12c^4+2a^2b^2 g(1)=21c4+2a2b2.
>
\qquad S m a x = b 4 c 2 c 4 + 4 a 2 b 2 S_{max}=\dfrac{b^4c^2}{c^4+4a^2b^2} Smax=c4+4a2b2b4c2
>
\qquad = b 4 ( a 2 − b 2 ) ( a 2 − b 2 ) + 4 a 2 b 2 = b 4 ( a 2 − b 2 ) ( a 2 + b 2 ) 2 =\dfrac{b^4(a^2-b^2)}{(a^2-b^2)+4a^2b^2}=\dfrac{b^4(a^2-b^2)}{(a^2+b^2)^2} =(a2b2)+4a2b2b4(a2b2)=(a2+b2)2b4(a2b2).


\qquad (ii) 当 2 a b c 2 &lt; 1 \frac{2ab}{c^2}&lt;1 c22ab<1,即 a &gt; ( 2 + 1 ) b a&gt;(\sqrt2+1)b a>(2 +1)b 时, g ( t ) g(t) g(t) 在区间 ( 0 , 2 a b c 2 ] \left(0,\frac{2ab}{c^2}\right] (0,c22ab] 上单调递减,在区间 [ 2 a b c 2 , 1 ) \left[\frac{2ab}{c^2},1\right) [c22ab,1) 上单调递增.
\qquad 因此, g ( t ) g(t) g(t) 的最小值为 g ( 2 a b c 2 ) = a b c 2 g(\frac{2ab}{c^2})=abc^2 g(c22ab)=abc2,此时, S m a x = b 3 4 a S_{max}=\frac{b^3}{4a} Smax=4ab3.


\qquad 综上,当 b &lt; a ≤ ( 2 + 1 ) b b&lt;a\leq(\sqrt2+1)b b<a(2 +1)b 时,
\qquad S m a x = b 4 ( a 2 − b 2 ) ( a 2 + b 2 ) 2 S_{max}=\frac{b^4(a^2-b^2)}{(a^2+b^2)^2} Smax=(a2+b2)2b4(a2b2);
\qquad a &gt; ( 2 + 1 ) b a&gt;(\sqrt2+1)b a>(2 +1)b 时, S m a x = b 3 4 a S_{max}=\frac{b^3}{4a} Smax=4ab3.

(蔡玉书)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值