2003,第32届美国数学奥林匹克

已知 a 、 b 、 c a、b、c abc 为正实数.证明:

( 2 a + b + c ) 2 2 a 2 + ( b + c ) 2 + ( 2 b + c + a ) 2 2 b 2 + ( c + a ) 2 + ( 2 c + a + b ) 2 2 c 2 + ( a + b ) 2 ≤ 8 \frac{(2a+b+c)^2}{2a^2+(b+c)^2}+\frac{(2b+c+a)^2}{2b^2+(c+a)^2}+\frac{(2c+a+b)^2}{2c^2+(a+b)^2}\leq8 2a2+(b+c)2(2a+b+c)2+2b2+(c+a)2(2b+c+a)2+2c2+(a+b)2(2c+a+b)28

证明:因为 a 、 b 、 c ∈ R + a、b、c\in\R^+ abcR+ ,所以,由柯西不等式知
2 a 2 + ( b + c ) 2 2 + ( b + c ) 2 2 3 ≥ 2 a + 2 2 ( b + c ) + 2 2 ( b + c ) 3 = 2 ( a + b + c ) 3 . \sqrt{\dfrac{2a^2+\frac{(b+c)^2}2+\frac{(b+c)^2}2}3}\geq\dfrac{\sqrt2a+\frac{\sqrt2}2(b+c)+\frac{\sqrt2}2(b+c)}3=\dfrac{\sqrt2(a+b+c)}3. 32a2+2(b+c)2+2(b+c)2 32 a+22 (b+c)+22 (b+c)=32 (a+b+c).

2 a 2 + ( b + c ) 2 ≥ 2 ( a + b + c ) 2 3 2a^2+(b+c)^2\geq\dfrac{2(a+b+c)^2}3 2a2+(b+c)232(a+b+c)2

同理, 2 b 2 + ( c + a ) ≥ 2 ( a + b + c ) 2 3 , 2 c 2 + ( a + b ) 2 ≥ 2 ( a + b + c ) 2 3 2b^2+(c+a)\geq\frac{2(a+b+c)^2}3,2c^2+(a+b)^2\geq\frac{2(a+b+c)^2}3 2b2+(c+a)32(a+b+c)22c2+(a+b)232(a+b+c)2

4 a ≥ b + c , 4 b ≥ c + a , 4 c ≥ a + b ⋯ ① 4a\geq b+c,4b\geq c+a,4c\geq a+b\cdots① 4ab+c4bc+a4ca+b

( 2 a + b + c ) 2 2 a 2 + ( b + c ) 2 = 2 + ( 4 a − b − c ) ( b + c ) 2 a 2 + ( b + c ) 2 ≤ 2 + 3 ( 4 a b + 4 a c − b 2 − 2 b c − c 2 ) 2 ( a + b + c ) 2 \frac{(2a+b+c)^2}{2a^2+(b+c)^2}=2+\frac{(4a-b-c)(b+c)}{2a^2+(b+c)^2}\leq2+\frac{3(4ab+4ac-b^2-2bc-c^2)}{2(a+b+c)^2} 2a2+(b+c)2(2a+b+c)2=2+2a2+(b+c)2(4abc)(b+c)2+2(a+b+c)23(4ab+4acb22bcc2)

( 2 b + c + a ) 2 2 b 2 + ( c + a ) 2 ≤ 2 + 3 ( 4 b c + 4 b a − a 2 − 2 a c − c 2 ) 2 ( a + b + c ) 2 , \frac{(2b+c+a)^2}{2b^2+(c+a)^2}\leq2+\frac{3(4bc+4ba-a^2-2ac-c^2)}{2(a+b+c)^2}, 2b2+(c+a)2(2b+c+a)22+2(a+b+c)23(4bc+4baa22acc2),

( 2 c + a + b ) 2 2 c 2 + ( a + b ) 2 ≤ 2 + 3 ( 4 c a + 4 c b − a 2 − 2 a b − b 2 ) 2 ( a + b + c ) 2 . \frac{(2c+a+b)^2}{2c^2+(a+b)^2}\leq2+\frac{3(4ca+4cb-a^2-2ab-b^2)}{2(a+b+c)^2}. 2c2+(a+b)2(2c+a+b)22+2(a+b+c)23(4ca+4cba22abb2).

三式相加得

( 2 a + b + c ) 2 2 a 2 + ( b + c ) 2 + ( 2 b + c + a ) 2 2 b 2 + ( c + a ) 2 + ( 2 c + a + b ) 2 2 c 2 + ( a + b ) 2 \frac{(2a+b+c)^2}{2a^2+(b+c)^2}+\frac{(2b+c+a)^2}{2b^2+(c+a)^2}+\frac{(2c+a+b)^2}{2c^2+(a+b)^2} 2a2+(b+c)2(2a+b+c)2+2b2+(c+a)2(2b+c+a)2+2c2+(a+b)2(2c+a+b)2 ≤ 6 + 3 ( 6 a b + 6 b c + 6 c a − 2 a 2 − 2 b 2 − 2 c 2 ) 2 ( a + b + c ) 2 \leq6+\frac{3(6ab+6bc+6ca-2a^2-2b^2-2c^2)}{2(a+b+c)^2} 6+2(a+b+c)23(6ab+6bc+6ca2a22b22c2) = 6 + 3 [ 3 ( a + b + c ) 2 − 5 a 2 − 5 b 2 − 5 c 2 ] 2 ( a + b + c ) 2 =6+\frac{3[3(a+b+c)^2-5a^2-5b^2-5c^2]}{2(a+b+c)^2} =6+2(a+b+c)23[3(a+b+c)25a25b25c2] = 21 2 − 15 2 ⋅ a 2 + b 2 + c 2 ( a + b + c ) 2 ≤ 21 2 − 15 2 × 1 3 = 8 =\frac{21}2-\frac{15}2\cdot\frac{a^2+b^2+c^2}{(a+b+c)^2}\leq\frac{21}2-\frac{15}2\times\frac13=8 =221215(a+b+c)2a2+b2+c2221215×31=8

若结论①不成立,不妨设 4 a &lt; b + c . 4a&lt;b+c. 4a<b+c. ( 2 a + b + c ) 2 2 a 2 + ( b + c ) 2 &lt; 2 \frac{(2a+b+c)^2}{2a^2+(b+c)^2}&lt;2 2a2+(b+c)2(2a+b+c)2<2.

由柯西不等式得 [ b + b + ( c + a ) ] 2 ≤ [ b 2 + b 2 + ( c + a ) 2 ] ( 1 + 1 + 1 ) [b+b+(c+a)]^2\leq[b^2+b^2+(c+a)^2](1+1+1) [b+b+(c+a)]2[b2+b2+(c+a)2](1+1+1) ,故

( 2 b + c + a ) 2 2 b 2 + ( c + a ) 2 ≤ 3 \frac{(2b+c+a)^2}{2b^2+(c+a)^2}\leq3 2b2+(c+a)2(2b+c+a)23.

同理, ( 2 c + a + b ) 2 2 c 2 + ( a + b ) 2 ≤ 3. \frac{(2c+a+b)^2}{2c^2+(a+b)^2}\leq3. 2c2+(a+b)2(2c+a+b)23.

所以, ( 2 a + b + c ) 2 2 a 2 + ( b + c ) 2 + ( 2 b + c + a ) 2 2 b 2 + ( c + a ) 2 + ( 2 c + a + b ) 2 2 c 2 + ( a + b ) 2 &lt; 8. \frac{(2a+b+c)^2}{2a^2+(b+c)^2}+\frac{(2b+c+a)^2}{2b^2+(c+a)^2}+\frac{(2c+a+b)^2}{2c^2+(a+b)^2}&lt;8. 2a2+(b+c)2(2a+b+c)2+2b2+(c+a)2(2b+c+a)2+2c2+(a+b)2(2c+a+b)2<8.

综上,知原不等式成立,当且仅当 a = b = c a=b=c a=b=c 时等号成立.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值