2003,第7届巴尔干地区数学奥林匹克

x 、 y 、 z x、y、z xyz 为大于 − 1 -1 1 的实数.证明:

1 + x 2 1 + y + z 2 + 1 + y 2 1 + z + x 2 + 1 + z 2 1 + x + y 2 ≥ 2. \frac{1+x^2}{1+y+z^2}+\frac{1+y^2}{1+z+x^2}+\frac{1+z^2}{1+x+y^2}\geq2. 1+y+z21+x2+1+z+x21+y2+1+x+y21+z22.

\qquad 证明 \quad 由已知得

1 + x 2 、 1 + y 2 、 1 + z 2 、 1 + y + z 2 、 1 + z + x 2 、 1 + x + y 2 1+x^2、1+y^2、1+z^2、1+y+z^2、1+z+x^2、1+x+y^2 1+x21+y21+z21+y+z21+z+x21+x+y2

均大于 0 0 0.
\qquad 由柯西不等式得
( 1 + x 2 1 + y + z 2 + 1 + y 2 1 + z + x 2 + 1 + z 2 z + x + y 2 ) (\frac{1+x^2}{1+y+z^2}+\frac{1+y^2}{1+z+x^2}+\frac{1+z^2}{z+x+y^2}) (1+y+z21+x2+1+z+x21+y2+z+x+y21+z2)

⋅ [ ( 1 + x 2 ) ( 1 + y + z 2 ) + ( 1 + y 2 ) ( 1 + z + x 2 ) + ( 1 + z 2 ) ( 1 + x + y 2 ) ] \cdot[(1+x^2)(1+y+z^2)+(1+y^2)(1+z+x^2)+(1+z^2)(1+x+y^2)] [(1+x2)(1+y+z2)+(1+y2)(1+z+x2)+(1+z2)(1+x+y2)]

≥ ( 1 + x 2 + 1 + y 2 + 1 + z 2 ) 2 . \geq(1+x^2+1+y^2+1+z^2)^2. (1+x2+1+y2+1+z2)2.

\qquad 1 + x 2 1 + y + z 2 + 1 + y 2 1 + z + x 2 + 1 + z 2 1 + x + y 2 \frac{1+x^2}{1+y+z^2}+\frac{1+y^2}{1+z+x^2}+\frac{1+z^2}{1+x+y^2} 1+y+z21+x2+1+z+x21+y2+1+x+y21+z2

≥ ( x 2 + y 2 + z 2 + 3 ) 2 ( 1 + x 2 ) ( 1 + y + z 2 ) + ( 1 + y 2 ) ( 1 + z + x 2 ) + ( 1 + z 2 ) ( 1 + x + y 2 ) \geq\frac{(x^2+y^2+z^2+3)^2}{(1+x^2)(1+y+z^2)+(1+y^2)(1+z+x^2)+(1+z^2)(1+x+y^2)} (1+x2)(1+y+z2)+(1+y2)(1+z+x2)+(1+z2)(1+x+y2)(x2+y2+z2+3)2

= x 4 + y 4 + z 4 + 9 + 2 x 2 y 2 + 2 y 2 z 2 + 2 z 2 x 2 + 6 x 2 + 6 y 2 + 6 z 2 x 2 y 2 + y 2 z 2 + z 2 x 2 + 2 ( x 2 + y 2 + z 2 ) + x 2 y + y 2 z + z 2 x + x + y + z + 3 =\frac{x^4+y^4+z^4+9+2x^2y^2+2y^2z^2+2z^2x^2+6x^2+6y^2+6z^2}{x^2y^2+y^2z^2+z^2x^2+2(x^2+y^2+z^2)+x^2y+y^2z+z^2x+x+y+z+3} =x2y2+y2z2+z2x2+2(x2+y2+z2)+x2y+y2z+z2x+x+y+z+3x4+y4+z4+9+2x2y2+2y2z2+2z2x2+6x2+6y2+6z2

= 2 + x 4 + y 4 + z 4 + 3 + 2 x 2 + 2 y 2 + 2 z 2 − 2 ( x 2 y + y 2 z + z 2 x + x + y + z ) x 2 y 2 + y 2 z 2 + z 2 x 2 + 2 ( x 2 + y 2 + z 2 ) + x 2 y + y 2 z + z 2 x + x + y + z + 3 =2+\frac{x^4+y^4+z^4+3+2x^2+2y^2+2z^2-2(x^2y+y^2z+z^2x+x+y+z)}{x^2y^2+y^2z^2+z^2x^2+2(x^2+y^2+z^2)+x^2y+y^2z+z^2x+x+y+z+3} =2+x2y2+y2z2+z2x2+2(x2+y2+z2)+x2y+y2z+z2x+x+y+z+3x4+y4+z4+3+2x2+2y2+2z22(x2y+y2z+z2x+x+y+z)

= 2 + ( x 2 − y ) 2 + ( y 2 − z ) 2 + ( z 2 − x ) 2 + ( x − 1 ) 2 + ( y − 1 ) 2 + ( z − 1 ) 2 x 2 y 2 + y 2 z 2 + z 2 x 2 + 2 ( x 2 + y 2 + z 2 ) + x 2 y + y 2 z + z 2 x + x + y + z + 3 =2+\frac{(x^2-y)^2+(y^2-z)^2+(z^2-x)^2+(x-1)^2+(y-1)^2+(z-1)^2}{x^2y^2+y^2z^2+z^2x^2+2(x^2+y^2+z^2)+x^2y+y^2z+z^2x+x+y+z+3} =2+x2y2+y2z2+z2x2+2(x2+y2+z2)+x2y+y2z+z2x+x+y+z+3(x2y)2+(y2z)2+(z2x)2+(x1)2+(y1)2+(z1)2

≥ 2. \geq2. 2.

当且仅当 x = y = z = 1 x=y=z=1 x=y=z=1 时,上式等号成立.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值