2002-2003,第20届伊朗数学奥林匹克第二轮

已知 a 、 b 、 c a、b、c abc 为正实数,满足 a 2 + b 2 + c 2 + a b c = 4. a^2+b^2+c^2+abc=4. a2+b2+c2+abc=4.
证明:

a + b + c ≤ 3. a+b+c\leq3. a+b+c3.

\qquad 证明 \qquad 显然, a 、 b 、 c a、b、c abc 在区间 [ 0 , 2 ] [0,2] [0,2] 上.

\qquad a = 2 cos ⁡ α , b = 2 cos ⁡ β ( α 、 β ∈ [ 0 , π 2 ] ) . a=2\cos\alpha,b=2\cos\beta(\alpha、\beta\in[0,\frac\pi2]). a=2cosα,b=2cosβ(αβ[0,2π]).

\qquad c c c 为正数时, a 2 + b 2 + c 2 + a b c a^2+b^2+c^2+abc a2+b2+c2+abc 为增函数 . 因此,对任意的正实数 a 、 b a、b ab 至多有一个正实数 c c c 满足

a 2 + b 2 + c 2 + a b c = 4. a^2+b^2+c^2+abc=4. a2+b2+c2+abc=4.

\qquad 先证明: c = 2 cos ⁡ ( π − α − β ) = − 2 cos ⁡ ( α + β ) c=2\cos (\pi-\alpha-\beta)=-2\cos(\alpha+\beta) c=2cos(παβ)=2cos(α+β) 满足条件.

\qquad 事实上,

\qquad cos ⁡ 2 α + cos ⁡ 2 β + cos ⁡ 2 ( α + β ) − 2 cos ⁡ α ⋅ cos ⁡ β ⋅ cos ⁡ ( α + β ) \cos^2\alpha+\cos^2\beta+\cos^2(\alpha+\beta)-2\cos\alpha\cdot\cos\beta\cdot\cos(\alpha+\beta) cos2α+cos2β+cos2(α+β)2cosαcosβcos(α+β)

\qquad = cos ⁡ 2 α + cos ⁡ 2 β + cos ⁡ 2 α ⋅ cos ⁡ 2 β + sin ⁡ 2 α ⋅ sin ⁡ 2 β − 2 cos ⁡ α ⋅ cos ⁡ β ⋅ sin ⁡ α ⋅ sin ⁡ β − 2 cos ⁡ 2 α ⋅ cos ⁡ 2 β + 2 cos ⁡ α ⋅ cos ⁡ β ⋅ sin ⁡ α ⋅ sin ⁡ β =\cos^2\alpha+\cos^2\beta+\cos^2\alpha\cdot\cos^2\beta+\sin^2\alpha\cdot\sin^2\beta-2\cos\alpha\cdot\cos\beta\cdot\sin\alpha\cdot\sin\beta-2\cos^2\alpha\cdot\cos^2\beta+2\cos\alpha\cdot\cos\beta\cdot\sin\alpha\cdot\sin\beta =cos2α+cos2β+cos2αcos2β+sin2αsin2β2cosαcosβsinαsinβ2cos2αcos2β+2cosαcosβsinαsinβ

= cos ⁡ 2 α + cos ⁡ 2 β − cos ⁡ 2 α ⋅ cos ⁡ 2 β + sin ⁡ 2 α ⋅ sin ⁡ 2 β =\cos^2\alpha+\cos^2\beta-\cos^2\alpha\cdot\cos^2\beta+\sin^2\alpha\cdot\sin^2\beta =cos2α+cos2βcos2αcos2β+sin2αsin2β

= cos ⁡ 2 α ⋅ sin ⁡ 2 β + 1 − cos ⁡ 2 α ⋅ sin ⁡ 2 β =\cos^2\alpha\cdot\sin^2\beta+1-\cos^2\alpha\cdot\sin^2\beta =cos2αsin2β+1cos2αsin2β
= 1 =1 =1

⇒ a 2 + b 2 + c 2 + a b c = 4. \Rightarrow a^2+b^2+c^2+abc=4. a2+b2+c2+abc=4.

α + β > 9 0 ∘ \alpha+\beta>90^\circ α+β>90,则 − 2 cos ⁡ ( α + β ) > 0 -2\cos(\alpha+\beta)>0 2cos(α+β)>0 c c c 满足条件的唯一值.

再证明:若 α + β &lt; 9 0 ∘ \alpha+\beta&lt;90^\circ α+β<90,则不存在满足条件的 c c c.

假设 c 1 、 c 2 c_1、c_2 c1c2 c 2 + ( a cos ⁡ α ⋅ cos ⁡ β ) c + 4 ( cos ⁡ 2 α + cos ⁡ 2 β − 1 ) = 0 c^2+(a\cos\alpha\cdot\cos\beta)c+4(\cos^2\alpha+\cos^2\beta-1)=0 c2+(acosαcosβ)c+4(cos2α+cos2β1)=0 的两个根.则

c 1 + c 2 = − 4 cos ⁡ α ⋅ cos ⁡ β ≤ 0 , c 1 c 2 = 4 ( cos ⁡ 2 α + cos ⁡ 2 β − 1 ) &gt; 0. c_1+c_2=-4\cos\alpha\cdot\cos\beta\leq0,c_1c_2=4(\cos^2\alpha+\cos^2\beta-1)&gt;0. c1+c2=4cosαcosβ0,c1c2=4(cos2α+cos2β1)>0.

所以, c 1 &lt; 0 , c 2 &lt; 0. c_1&lt;0,c_2&lt;0. c1<0,c2<0.

c c c 无解.因此, a = 2 cos ⁡ α , b = 2 cos ⁡ β , c = 2 cos ⁡ γ a=2\cos\alpha,b=2\cos\beta,c=2\cos\gamma a=2cosα,b=2cosβ,c=2cosγ

其中, α 、 β 、 γ \alpha、\beta、\gamma αβγ 是一个锐角三角形的内角.

a + b + c = 2 ( cos ⁡ α + cos ⁡ β + cos ⁡ γ ) . a+b+c=2(\cos\alpha+\cos\beta+\cos\gamma). a+b+c=2(cosα+cosβ+cosγ).

注意到, cos ⁡ x \cos x cosx [ 0 , π 2 ] [0,\dfrac\pi2] [0,2π] 上是上凸函数,所以,

cos ⁡ α + cos ⁡ β + cos ⁡ γ ≤ 3 cos ⁡ ( α + β + γ 3 ) = 3 2 . \cos\alpha+\cos\beta+\cos\gamma\leq3\cos(\frac{\alpha+\beta+\gamma}3)=\frac32. cosα+cosβ+cosγ3cos(3α+β+γ)=23.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值