04 ,内积,范数,二维向量夹角推导,三角形边长推导,向量夹角 :

本文深入探讨了向量的内积与范数概念,包括内积的代数定义及四种性质,范数的几何意义及其不同形式如L1、L2范数,以及如何通过内积计算向量夹角,解析向量空间中的距离与角度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 ,内积 : 代数定义 ( 相乘之后加起来 )

  1. 定义 :
    在这里插入图片描述
  2. 总结 :
    1 ,同维度向量
    2 ,对应项相乘,将结果加起来
  3. 内积的 4 种性质 : 符合加法规律 ( 交换律,结合律,分配率 )
    在这里插入图片描述

2 ,范数 :

  1. 几何意义 :向量在空间中的距离 ( 大小 )
  2. 图示 :
    在这里插入图片描述

3 ,L1 范数 : 曼哈顿距离 ( 绝对值求和 )

在这里插入图片描述

4 ,L2 范数 : 欧几里得范数 ( 平方和的开平方 )

在这里插入图片描述

5 ,二维向量的夹角 : 多维可以由此推导出

  1. 三角形边长推导 :已知三边,求底边切分长度( 求 x,y )
  2. 推导过程 :
    1 ,x + y = b
    2 ,高的平方 = a2 - x2
    3 ,高的平方 = b2 - y2
    4 ,所以 : a2-x2 = b2-y2
    5 ,1 和 4 两式联立,得到 x,y
  3. 二维向量夹角推导 :

6 ,内积 : 几何解释 ( 向量夹角 )

  1. 意义 : 向量空间中的角度
  2. 向量夹角的余弦 = 内积 / 欧几里得范数
    在这里插入图片描述
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值