1 ,内积 : 代数定义 ( 相乘之后加起来 )
- 定义 :
- 总结 :
1 ,同维度向量
2 ,对应项相乘,将结果加起来 - 内积的 4 种性质 : 符合加法规律 ( 交换律,结合律,分配率 )
2 ,范数 :
- 几何意义 :向量在空间中的距离 ( 大小 )
- 图示 :
3 ,L1 范数 : 曼哈顿距离 ( 绝对值求和 )
4 ,L2 范数 : 欧几里得范数 ( 平方和的开平方 )
5 ,二维向量的夹角 : 多维可以由此推导出
- 三角形边长推导 :已知三边,求底边切分长度( 求 x,y )
- 推导过程 :
1 ,x + y = b
2 ,高的平方 = a2 - x2
3 ,高的平方 = b2 - y2
4 ,所以 : a2-x2 = b2-y2
5 ,1 和 4 两式联立,得到 x,y - 二维向量夹角推导 :
6 ,内积 : 几何解释 ( 向量夹角 )
- 意义 : 向量空间中的角度
- 向量夹角的余弦 = 内积 / 欧几里得范数