【NLP】_09_Seq2Seq Model


 


 

【一】 Multimodal Learning(多模态学习)

 

  • 多种模型的拼接(图片,文本,语音等的相互转换)
     
    C N N        ⇔        R N N / L S T M CNN \;\;\; \bm \red {\Leftrightarrow} \;\;\; RNN / LSTM CNNRNN/LSTM

R N N / L S T M        ⇔        R N N / L S T M RNN / LSTM \;\;\; \bm \red {\Leftrightarrow} \;\;\; RNN / LSTM RNN/LSTMRNN/LSTM

. . . . . . ...... ......

 


 

【二】 Seq2Seq Model(序列到序列模型)

 

Mini-BatchTraining:为了可以使用矩阵运算(速度快),需要 mini-batch 的数据的长度一致,一个方法就是找到最长的那个,然后以此为基准,0 填充其他的数据

 


 

【三】 Evaluate Seq2Seq Model(评估模型效果)

 

问题:其实最原始的 Seq2Seq 模型,在 Decoder 部分是一种贪心算法(TOP1),每一步生成的都是当前 Softmax 最高(概率最大)的那个, 但有时候这样生成出来的结果只是考虑了局部最优化,并不是全局最优的

 

【3.1】 Beam Search(选取 Top K 个值作为候选)
  • 在每一个 时间步骤 都采用 TOP K 的操作
  • 为了解决生成长度不一致问题(遇到 <STOP> 就会结束,但是长度更长的可能效果更好),采用 均值 来衡量

 


 

【四】 End-to-End Learning(端到端学习)

 

Feature Extraction(特征提取)融入到 Modeling 中,让 Modeling 的过程 自动 提取特征

 

【4.1】 Good Representation:(Multiple Explanatory Factors - 多维度)
  • 多角度,抓重点 的 Representation
  • 例如:一个 100-dim 的向量,[ : 20 ] 表示人脸,[ 20 : 50 ] 表示亮度,[ 50 : ] 表示景色 …

 

【4.2】 Good Representation:(Hierarchical Representation - 层次)
  • CV汽车图片 ⇒ \Rightarrow 纹路 ⇒ \Rightarrow 轮胎 ⇒ \Rightarrow 车架 ⇒ \Rightarrow 整车
  • NLP一篇文章 ⇒ \Rightarrow 音素 ⇒ \Rightarrow ⇒ \Rightarrow 句子 ⇒ \Rightarrow 段落 ⇒ \Rightarrow 整文

 

【4.3】 Good Representation:(Low Dimensional Manifold - 低维空间)
  • 好的 Representation 一般存在于 低维空间
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值