Educational Codeforces Round 104 (Rated for Div. 2) A~D题解
题目地址:传送门
A:
大致题意是 n个英雄打架,问最多有几个人可能成为最后的胜者
思路: 最小初始分值的人无论如何最后都不可能成为最后的胜者,因为它无论跟谁打要么平局,要么输, 所以很简单,找出有最小初始分数的人数,再用总人数减去它便是结果了
代码:
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<queue>
#include<iostream>
using namespace std;
typedef long long ll;
const int N = 1010;
int a[N];
int main() {
int t;
cin>>t;
while(t--) {
int n;
cin>>n;
int minn = 0x3f3f3f3f;
for(int i=1; i<=n; i++) {
cin>>a[i];
minn = min(minn,a[i]);
}
int cnt = 0;
for(int i=1;i<=n;i++){
if(a[i] == minn)
cnt ++;
}
cout <<n-cnt <<endl;
}
return 0;
}
B:
思路: 画图模拟一下可知,
当n为偶数时,两猫永远不会相遇,这个就很好处理了。
当n为奇数时,找规律,两猫会每过 n/2 次便会相遇一次,所以我们可以首先计算出在k次前两猫相遇了多少次,即 (k-1) / (n/2) 。 再加上总次数k ,最后模一下n,就是结果。
注意:若最后%的结果是0,说明B猫的位置正好是n
代码:
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<queue>
#include<iostream>
using namespace std;
typedef long long ll;
const int N = 1010;
int a[N];
int main() {
int t;
cin>>t;
while(t--) {
ll n,k;
cin>>n>>k;
if(~n&1) {
ll res = 0;
res = k % n;
if(res == 0)
res = n;
cout << res << endl;
continue;
}
else {
ll res = 0;
ll temp = (k-1) / (n / 2);
res = k + temp;
res %= n;
if(res == 0) res = n;
cout << res <<endl;
}
}
return 0;
}
C:
有n组足球队,每两组都要打一场比赛,赢得获3分,输的获0分,平局各获1分
问如何安排比赛,才能使最后所有队伍分数都相同,并且平局次数是最少的
思路: 分类讨论一下
若 n 是偶数 ,那么每个队伍都要与 n-1 组比赛 ,(n-1) 是奇数,所以必然每组都要与别人打一局平局,然后每一组要与剩余的 n-2 组 均分输赢 ,意思也就是说与剩余(n - 2) / 2 组打要赢,与 (n - 2) / 2 组打要输 , 这也是这道构造题难想到的地方
若 n 是奇数,那么就很好处理了, n-1 是偶数,所以不需要平局, 直接均分n-1 输赢就好了
代码:
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<map>
#include<iostream>
using namespace std;
typedef long long ll;
const int N = 1010;
int a[N];
map<int,int> mp;
/*
这里mp[i] 表示 i号队伍上一次是赢了还是输了
若 mp[i] == 1 ,说明上一场i号是打赢了,所以这一场i号队伍需要输一场,以保持平衡
*/
int main() {
int t;
cin>>t;
while(t--) {
mp.clear();
int n;
cin>>n;
if(n & 1) {
for(int i=1; i<=n-1; i++) {
for(int j=i+1; j<=n; j++) {
if(mp[i] == 0) {
cout<<"1 ";
mp[i] = 1;
mp[j] = -1;
} else if(mp[i] == 1) {
cout <<"-1 ";
mp[i] = -1;
mp[j] = 1;
} else if(mp[i] == -1) {
cout <<"1 ";
mp[i] = 1;
mp[j] = -1;
}
}
}
} else {
for(int i=1; i<=n-1; i++) {
for(int j=i+1; j<=n; j++) {
if(i + j == (n + 1)) {
cout<<"0 ";
} else if(mp[i] == 0) {
cout<<"1 ";
mp[i] = 1;
mp[j] = -1;
} else if(mp[i] == 1) {
cout <<"-1 ";
mp[i] = -1;
mp[j] = 1;
} else if(mp[i] == -1) {
cout <<"1 ";
mp[i] = 1;
mp[j] = -1;
}
}
}
}
puts("");
}
return 0;
}
D:
给你限制条件: 1<= a <= b <= c <= n
同时告诉你,abc构成的三角形要满足: c = a*a - b
问 这样的三角形有多少个
思路: 因为要构成三角形 ,所以 a * a + b * b = c * c 这是必然的
我们可以把 c = a * a - b 带入 a * a + b * b = c * c 中,
化简一下: c * c - b*b = b + c ,有没有想到平方差公式呢?
因为 b+c 肯定大于0 所以推出了公式1:c = b + 1
再把c = b + 1带入 c = a * a - b
所以 a * a = 2*b + 1 ,所以a的范围是根号n级别的,就可以枚举出结果了
代码:
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<map>
#include<iostream>
using namespace std;
typedef long long ll;
const int N = 1010;
int a[N];
int main() {
std::ios::sync_with_stdio(false);
cin.tie(0);
int t;
cin>>t;
while(t--) {
ll cnt = 0;
ll n;
cin>>n;
ll ma = (ll)(sqrt(2*(n-1)+1));
/*
这里ma的值 是因为 b<=c<=n ,所以b<= n-1 ,这是b的最大范围
*/
for(int i=2; i<=ma; i++) {
ll temp = i * i - 1;
if(temp % 2 == 0 ) {
if((temp/2) <n) cnt++;
}
}
cout <<cnt << endl;
}
return 0;
}