神经网络模型是由神经网络层和Tensor操作构成的,mindspore.nn提供了常见神经网络层的实现,在MindSpore中,Cell类是构建所有网络的基类,也是网络的基本单元。一个神经网络模型表示为一个Cell
,它由不同的子Cell
构成。使用这样的嵌套结构,可以简单地使用面向对象编程的思维,对神经网络结构进行构建和管理。
构建一个用于Mnist数据集分类的神经网络模型。
导入相关依赖
import mindspore
from mindspore import nn, ops
1、定义模型类
当我们定义神经网络时,可以继承nn.Cell
类,在__init__
方法中进行子Cell的实例化和状态管理,在construct
方法中实现Tensor操作。
construct
意为神经网络(计算图)构建,相关内容详见使用静态图加速。
class Network(nn.Cell):
def __init__(self):
super().__init__()
self.flatten = nn.Flatten()
self.dense_relu_sequential = nn.SequentialCell(
nn.Dense(28*28, 512, weight_init="normal", bias_init="zeros"),
nn.ReLU(),
nn.Dense(512, 512, weight_init="normal", bias_init="zeros"),
nn.ReLU(),
nn.Dense(512, 10, weight_init="normal", bias_init="zeros")
)
def construct(self, x):
x = self.flatten(x)
logits = self.dense_relu_sequential(x)
return logits
构建完成后,实例化Network
对象,并查看其结构。
model = Network()
print(model)
运行结果为:
Network< (flatten): Flatten<> (dense_relu_sequential): SequentialCell< (0): Dense<input_channels=784, output_channels=512, has_bias=True> (1): ReLU<> (2): Dense<input_channels=512, output_channels=512, has_bias=True> (3): ReLU<> (4): Dense<input_channels=512, output_channels=10, has_bias=True> > >
我们构造一个输入数据,直接调用模型,可以获得一个十维的Tensor输出,其包含每个类别的原始预测值。
model.construct()
方法不可直接调用。
X = ops.ones((1, 28, 28), mindspore.float32)
logits = model(X)
# print logits
logits
运行结果为:
Tensor(shape=[1, 10], dtype=Float32, value= [[-1.17077725e-04, -1.83978945e-03, 1.42184063e-03 ... 5.18099079e-03, -4.48541529e-03, -6.03778334e-03]])
在此基础上,我们通过一个nn.Softmax
层实例来获得预测概率。
pred_probab = nn.Softmax(axis=1)(logits)
y_pred = pred_probab.argmax(1)
print(f"Predicted class: {y_pred}")
运行结果为:
Predicted class: [6]
2、模型层
本节中我们分解上节构造的神经网络模型中的每一层。首先我们构造一个shape为(3, 28, 28)的随机数据(3个28x28的图像),依次通过每一个神经网络层来观察其效果。
input_image = ops.ones((3, 28, 28), mindspore.float32)
print(input_image.shape)
运行结果为:
(3, 28, 28)
nn.Flatten
实例化nn.Flatten层,将28x28的2D张量转换为784大小的连续数组。
flatten = nn.Flatten()
flat_image = flatten(input_image)
print(flat_image.shape)
运行结果为:
(3, 784)
nn.Dense
nn.Dense为全连接层,其使用权重和偏差对输入进行线性变换。
layer1 = nn.Dense(in_channels=28*28, out_channels=20)
hidden1 = layer1(flat_image)
print(hidden1.shape)
运行结果为:
(3, 20)
nn.ReLU
nn.ReLU层给网络中加入非线性的激活函数,帮助神经网络学习各种复杂的特征。
print(f"Before ReLU: {hidden1}\n\n")
hidden1 = nn.ReLU()(hidden1)
print(f"After ReLU: {hidden1}")
运行结果为:
Before ReLU: [[-0.2707155 1.4038372 -0.85690844 -0.10324954 0.00257333 -0.46557307 0.9850357 -1.2857797 -0.1580101 0.61919886 -0.03733729 0.0906074 -0.49194083 0.14215034 -0.05127811 0.07232971 -1.1580753 0.65504557 0.867848 0.27400362] [-0.2707155 1.4038372 -0.85690844 -0.10324954 0.00257333 -0.46557307 0.9850357 -1.2857797 -0.1580101 0.61919886 -0.03733729 0.0906074 -0.49194083 0.14215034 -0.05127811 0.07232971 -1.1580753 0.65504557 0.867848 0.27400362] [-0.2707155 1.4038372 -0.85690844 -0.10324954 0.00257333 -0.46557307 0.9850357 -1.2857797 -0.1580101 0.61919886 -0.03733729 0.0906074 -0.49194083 0.14215034 -0.05127811 0.07232971 -1.1580753 0.65504557 0.867848 0.27400362]] After ReLU: [[0. 1.4038372 0. 0. 0.00257333 0. 0.9850357 0. 0. 0.61919886 0. 0.0906074 0. 0.14215034 0. 0.07232971 0. 0.65504557 0.867848 0.27400362] [0. 1.4038372 0. 0. 0.00257333 0. 0.9850357 0. 0. 0.61919886 0. 0.0906074 0. 0.14215034 0. 0.07232971 0. 0.65504557 0.867848 0.27400362] [0. 1.4038372 0. 0. 0.00257333 0. 0.9850357 0. 0. 0.61919886 0. 0.0906074 0. 0.14215034 0. 0.07232971 0. 0.65504557 0.867848 0.27400362]]
nn.SequentialCell
nn.SequentialCell是一个有序的Cell容器。输入Tensor将按照定义的顺序通过所有Cell。我们可以使用SequentialCell
来快速组合构造一个神经网络模型。
seq_modules = nn.SequentialCell(
flatten,
layer1,
nn.ReLU(),
nn.Dense(20, 10)
)
logits = seq_modules(input_image)
print(logits.shape)
运行结果为:
(3, 10)
nn.Softmax
最后使用nn.Softmax将神经网络最后一个全连接层返回的logits的值缩放为[0, 1],表示每个类别的预测概率。axis
指定的维度数值和为1。
softmax = nn.Softmax(axis=1)
pred_probab = softmax(logits)
3、模型参数
网络内部神经网络层具有权重参数和偏置参数(如nn.Dense
),这些参数会在训练过程中不断进行优化,可通过 model.parameters_and_names()
来获取参数名及对应的参数详情。
print(f"Model structure: {model}\n\n")
for name, param in model.parameters_and_names():
print(f"Layer: {name}\nSize: {param.shape}\nValues : {param[:2]} \n")
运行结果为:
Model structure: Network< (flatten): Flatten<> (dense_relu_sequential): SequentialCell< (0): Dense<input_channels=784, output_channels=512, has_bias=True> (1): ReLU<> (2): Dense<input_channels=512, output_channels=512, has_bias=True> (3): ReLU<> (4): Dense<input_channels=512, output_channels=10, has_bias=True> > > Layer: dense_relu_sequential.0.weight Size: (512, 784) Values : [[ 0.00895912 -0.00322225 -0.00996168 ... -0.01378694 -0.01262991 0.00318453] [ 0.00141568 0.00411092 0.00405897 ... -0.00869681 -0.0052593 0.01607107]] Layer: dense_relu_sequential.0.bias Size: (512,) Values : [0. 0.] Layer: dense_relu_sequential.2.weight Size: (512, 512) Values : [[-0.00531246 0.00454591 -0.00795852 ... -0.01054406 -0.00435419 0.00296457] [-0.02302137 -0.00242523 0.00043965 ... 0.00542837 -0.00011118 -0.00740191]] Layer: dense_relu_sequential.2.bias Size: (512,) Values : [0. 0.] Layer: dense_relu_sequential.4.weight Size: (10, 512) Values : [[-0.00144739 -0.00955362 0.02208088 ... 0.01987878 -0.00519038 -0.0026716 ] [-0.00031144 0.00619325 -0.00437942 ... -0.02186853 0.01455805 -0.00210372]] Layer: dense_relu_sequential.4.bias Size: (10,) Values : [0. 0.]
更多内置神经网络层详见mindspore.nn API。
又是收获满满的一天: