昇思25天学习打卡营第5天|网络构建

神经网络模型是由神经网络层和Tensor操作构成的,mindspore.nn提供了常见神经网络层的实现,在MindSpore中,Cell类是构建所有网络的基类,也是网络的基本单元。一个神经网络模型表示为一个Cell,它由不同的子Cell构成。使用这样的嵌套结构,可以简单地使用面向对象编程的思维,对神经网络结构进行构建和管理。

构建一个用于Mnist数据集分类的神经网络模型。

导入相关依赖

import mindspore
from mindspore import nn, ops

1、定义模型类

当我们定义神经网络时,可以继承nn.Cell类,在__init__方法中进行子Cell的实例化和状态管理,在construct方法中实现Tensor操作。

construct意为神经网络(计算图)构建,相关内容详见使用静态图加速

class Network(nn.Cell):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.dense_relu_sequential = nn.SequentialCell(
            nn.Dense(28*28, 512, weight_init="normal", bias_init="zeros"),
            nn.ReLU(),
            nn.Dense(512, 512, weight_init="normal", bias_init="zeros"),
            nn.ReLU(),
            nn.Dense(512, 10, weight_init="normal", bias_init="zeros")
        )

    def construct(self, x):
        x = self.flatten(x)
        logits = self.dense_relu_sequential(x)
        return logits

 构建完成后,实例化Network对象,并查看其结构。

model = Network()
print(model)

运行结果为:

Network<
  (flatten): Flatten<>
  (dense_relu_sequential): SequentialCell<
    (0): Dense<input_channels=784, output_channels=512, has_bias=True>
    (1): ReLU<>
    (2): Dense<input_channels=512, output_channels=512, has_bias=True>
    (3): ReLU<>
    (4): Dense<input_channels=512, output_channels=10, has_bias=True>
    >
  >

我们构造一个输入数据,直接调用模型,可以获得一个十维的Tensor输出,其包含每个类别的原始预测值。

model.construct()方法不可直接调用。

X = ops.ones((1, 28, 28), mindspore.float32)
logits = model(X)
# print logits
logits

运行结果为:

Tensor(shape=[1, 10], dtype=Float32, value=
[[-1.17077725e-04, -1.83978945e-03,  1.42184063e-03 ...  5.18099079e-03, -4.48541529e-03, -6.03778334e-03]])

在此基础上,我们通过一个nn.Softmax层实例来获得预测概率。

pred_probab = nn.Softmax(axis=1)(logits)
y_pred = pred_probab.argmax(1)
print(f"Predicted class: {y_pred}")

运行结果为:

Predicted class: [6]

2、模型层

本节中我们分解上节构造的神经网络模型中的每一层。首先我们构造一个shape为(3, 28, 28)的随机数据(3个28x28的图像),依次通过每一个神经网络层来观察其效果。

input_image = ops.ones((3, 28, 28), mindspore.float32)
print(input_image.shape)

 运行结果为:

(3, 28, 28)

nn.Flatten

实例化nn.Flatten层,将28x28的2D张量转换为784大小的连续数组。

flatten = nn.Flatten()
flat_image = flatten(input_image)
print(flat_image.shape)

运行结果为:

(3, 784)

nn.Dense

nn.Dense为全连接层,其使用权重和偏差对输入进行线性变换。

layer1 = nn.Dense(in_channels=28*28, out_channels=20)
hidden1 = layer1(flat_image)
print(hidden1.shape)

 运行结果为:

(3, 20)

nn.ReLU

nn.ReLU层给网络中加入非线性的激活函数,帮助神经网络学习各种复杂的特征。

print(f"Before ReLU: {hidden1}\n\n")
hidden1 = nn.ReLU()(hidden1)
print(f"After ReLU: {hidden1}")

运行结果为:

Before ReLU: [[-0.2707155   1.4038372  -0.85690844 -0.10324954  0.00257333 -0.46557307
   0.9850357  -1.2857797  -0.1580101   0.61919886 -0.03733729  0.0906074
  -0.49194083  0.14215034 -0.05127811  0.07232971 -1.1580753   0.65504557
   0.867848    0.27400362]
 [-0.2707155   1.4038372  -0.85690844 -0.10324954  0.00257333 -0.46557307
   0.9850357  -1.2857797  -0.1580101   0.61919886 -0.03733729  0.0906074
  -0.49194083  0.14215034 -0.05127811  0.07232971 -1.1580753   0.65504557
   0.867848    0.27400362]
 [-0.2707155   1.4038372  -0.85690844 -0.10324954  0.00257333 -0.46557307
   0.9850357  -1.2857797  -0.1580101   0.61919886 -0.03733729  0.0906074
  -0.49194083  0.14215034 -0.05127811  0.07232971 -1.1580753   0.65504557
   0.867848    0.27400362]]


After ReLU: [[0.         1.4038372  0.         0.         0.00257333 0.
  0.9850357  0.         0.         0.61919886 0.         0.0906074
  0.         0.14215034 0.         0.07232971 0.         0.65504557
  0.867848   0.27400362]
 [0.         1.4038372  0.         0.         0.00257333 0.
  0.9850357  0.         0.         0.61919886 0.         0.0906074
  0.         0.14215034 0.         0.07232971 0.         0.65504557
  0.867848   0.27400362]
 [0.         1.4038372  0.         0.         0.00257333 0.
  0.9850357  0.         0.         0.61919886 0.         0.0906074
  0.         0.14215034 0.         0.07232971 0.         0.65504557
  0.867848   0.27400362]]

nn.SequentialCell

nn.SequentialCell是一个有序的Cell容器。输入Tensor将按照定义的顺序通过所有Cell。我们可以使用SequentialCell来快速组合构造一个神经网络模型。

seq_modules = nn.SequentialCell(
    flatten,
    layer1,
    nn.ReLU(),
    nn.Dense(20, 10)
)

logits = seq_modules(input_image)
print(logits.shape)

运行结果为:

(3, 10)

nn.Softmax

最后使用nn.Softmax将神经网络最后一个全连接层返回的logits的值缩放为[0, 1],表示每个类别的预测概率。axis指定的维度数值和为1。

softmax = nn.Softmax(axis=1)
pred_probab = softmax(logits)

3、模型参数

网络内部神经网络层具有权重参数和偏置参数(如nn.Dense),这些参数会在训练过程中不断进行优化,可通过 model.parameters_and_names() 来获取参数名及对应的参数详情。

print(f"Model structure: {model}\n\n")

for name, param in model.parameters_and_names():
    print(f"Layer: {name}\nSize: {param.shape}\nValues : {param[:2]} \n")

运行结果为:

Model structure: Network<
  (flatten): Flatten<>
  (dense_relu_sequential): SequentialCell<
    (0): Dense<input_channels=784, output_channels=512, has_bias=True>
    (1): ReLU<>
    (2): Dense<input_channels=512, output_channels=512, has_bias=True>
    (3): ReLU<>
    (4): Dense<input_channels=512, output_channels=10, has_bias=True>
    >
  >


Layer: dense_relu_sequential.0.weight
Size: (512, 784)
Values : [[ 0.00895912 -0.00322225 -0.00996168 ... -0.01378694 -0.01262991
   0.00318453]
 [ 0.00141568  0.00411092  0.00405897 ... -0.00869681 -0.0052593
   0.01607107]] 

Layer: dense_relu_sequential.0.bias
Size: (512,)
Values : [0. 0.] 

Layer: dense_relu_sequential.2.weight
Size: (512, 512)
Values : [[-0.00531246  0.00454591 -0.00795852 ... -0.01054406 -0.00435419
   0.00296457]
 [-0.02302137 -0.00242523  0.00043965 ...  0.00542837 -0.00011118
  -0.00740191]] 

Layer: dense_relu_sequential.2.bias
Size: (512,)
Values : [0. 0.] 

Layer: dense_relu_sequential.4.weight
Size: (10, 512)
Values : [[-0.00144739 -0.00955362  0.02208088 ...  0.01987878 -0.00519038
  -0.0026716 ]
 [-0.00031144  0.00619325 -0.00437942 ... -0.02186853  0.01455805
  -0.00210372]] 

Layer: dense_relu_sequential.4.bias
Size: (10,)
Values : [0. 0.] 

更多内置神经网络层详见mindspore.nn API

又是收获满满的一天:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值