attention的是是非非

本文探讨了神经网络中注意力机制的基本形式,并介绍了几种优化方法,包括ISSA的交错稀疏自注意力,CCNet的交叉注意力用于语义分割,以及Linformer的线性复杂度自注意力。这些方法旨在减少计算量和显存占用,同时保持或增强模型的性能。
摘要由CSDN通过智能技术生成

基本形式:

在这里插入图片描述

图解:

在这里插入图片描述
其中Q为query,K为key,V为value。attention就是看看Q和K的相关性,Q代表的是原图中的原始信息的语义映射,一般不改变其维度,K代表想将原图中的信息映射到多少维的空间中,(保持、增大还是减少)。
在self-attention中,计算量和显存占用比较大的主要是生成attention map时的 步骤。因此可以从这个方向减少计算量。

更改示例

ISSA: Interlaced Sparse Self-Attention

先shuffle维度,使得local attention能够看到更远的信息,再tanspose回来,这样也看到了近处的局部信息:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值