讲道理,这一题真的不难,因为最近在搞基础dp,就用dp思想写了,感觉数据量比较小dfs应该可以;这题用dp思想写的话,思想无非就是:每行每一列的格子都可以从1,他的因子过来,2,左面的一个格子过来,3,上面过来,那就选出从这三个方向来的最大值,再加上当前格子的值,每一个格子的dp都代表从起点到这个格子的最大值,如果你会LIS,这个题一眼就应该会了,只不过把一行上面的数据变成了n行而已,但是,但是,我还是wa了2次,原因。。。初始化比较讲究,0行0列都要复制正无穷,开始dp数组都要赋值负无穷,这是为了保证每个格子所得到的值必须从前面来的,而不是自己;一开始我赋值0,一组数据:1 2 2 -1 -1 -1 -1 这组数据输出的是-3,我的程序确实0,这是因为取最大值的时候,自己本身的格子0比-1大所以就一直取0了、、、
Problem Description
Problem Description
穿过幽谷意味着离大魔王lemon已经无限接近了!
可谁能想到,yifenfei在斩杀了一些虾兵蟹将后,却再次面临命运大迷宫的考验,这是魔王lemon设下的又一个机关。要知道,不论何人,若在迷宫中被困1小时以上,则必死无疑!
可怜的yifenfei为了去救MM,义无返顾地跳进了迷宫。让我们一起帮帮执着的他吧!
命运大迷宫可以看成是一个两维的方格阵列,如下图所示:
yifenfei一开始在左上角,目的当然是到达右下角的大魔王所在地。迷宫的每一个格子都受到幸运女神眷恋或者痛苦魔王的诅咒,所以每个格子都对应一个值,走到那里便自动得到了对应的值。
现在规定yifenfei只能向右或者向下走,向下一次只能走一格。但是如果向右走,则每次可以走一格或者走到该行的列数是当前所在列数倍数的格子,即:如果当前格子是(x,y),下一步可以是(x+1,y),(x,y+1)或者(x,y*k) 其中k>1。
为了能够最大把握的消灭魔王lemon,yifenfei希望能够在这个命运大迷宫中得到最大的幸运值。
可谁能想到,yifenfei在斩杀了一些虾兵蟹将后,却再次面临命运大迷宫的考验,这是魔王lemon设下的又一个机关。要知道,不论何人,若在迷宫中被困1小时以上,则必死无疑!
可怜的yifenfei为了去救MM,义无返顾地跳进了迷宫。让我们一起帮帮执着的他吧!
命运大迷宫可以看成是一个两维的方格阵列,如下图所示:
yifenfei一开始在左上角,目的当然是到达右下角的大魔王所在地。迷宫的每一个格子都受到幸运女神眷恋或者痛苦魔王的诅咒,所以每个格子都对应一个值,走到那里便自动得到了对应的值。
现在规定yifenfei只能向右或者向下走,向下一次只能走一格。但是如果向右走,则每次可以走一格或者走到该行的列数是当前所在列数倍数的格子,即:如果当前格子是(x,y),下一步可以是(x+1,y),(x,y+1)或者(x,y*k) 其中k>1。
为了能够最大把握的消灭魔王lemon,yifenfei希望能够在这个命运大迷宫中得到最大的幸运值。
Input
输入数据首先是一个整数C,表示测试数据的组数。
每组测试数据的第一行是两个整数n,m,分别表示行数和列数(1<=n<=20,10<=m<=1000);
接着是n行数据,每行包含m个整数,表示n行m列的格子对应的幸运值K ( |k|<100 )。
每组测试数据的第一行是两个整数n,m,分别表示行数和列数(1<=n<=20,10<=m<=1000);
接着是n行数据,每行包含m个整数,表示n行m列的格子对应的幸运值K ( |k|<100 )。
Output
请对应每组测试数据输出一个整数,表示yifenfei可以得到的最大幸运值。
Sample Input
1 3 8 9 10 10 10 10 -10 10 10 10 -11 -1 0 2 11 10 -20 -11 -11 10 11 2 10 -10 -10
Sample Output
52
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 1005;
const int inf = 0x3f3f3f3f;
int dp[maxn][maxn], a[maxn][maxn];
int main()
{
int c, n, m;
scanf("%d",&c);
while(c--)
{
scanf("%d%d",&n,&m);
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++)
scanf("%d",&a[i][j]), dp[i][j] = -101; //让每个格子的初始化比k最大值的负数小
dp[1][1] = a[1][1]; //初始化
for(int j = 0; j <= m; j++)
dp[0][j] = -inf; //初始化
for(int i = 0; i <= n; i++)
dp[i][0] = -inf; //初始化
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++)
{
for(int l = 1; l < j; l++) //从他的因子来的
{
if(j%l == 0) dp[i][j] = max(dp[i][j],dp[i][l] + a[i][j]);
}
dp[i][j] = max(dp[i][j-1]+a[i][j],dp[i][j]); //从左面格子来的
dp[i][j] = max(dp[i-1][j]+a[i][j],dp[i][j]); //从上面格子来的
}
cout << dp[n][m] << endl;
}
return 0;
}