个性化智能推荐系统分析与调研

本文详细介绍了个性化智能推荐系统的设计与建设过程,包括用户行为召回模型、匹配算法、排序算法、用户行为数据采集、用户画像体系设计、数据存储加工以及用户特征提取。系统通过用户历史行为、偏好和地域信息进行推荐,利用高斯逻辑回归和多维算法匹配商品。此外,文章还强调了全网行为数据采集和用户画像的重要性,以提升推荐效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.     系统简介

从市场用户调研到互联网电商平台产品设计,再到上线运营推广,覆盖的面很宽,但最为关键和难度最高的是个性化推荐系统、搜索底层和大数据系统。其中,个性化推荐系统和搜索底层都是基于大数据,所以最终各条产品线和技术都归集到大数据系统上。

个性化智能推荐最终的目标是让一个普通访问电商平台的用户,在进入平台页面时,系统能够根据用户日常的行为偏好和习惯,用户心理想要购买的商品,在还没有发生点击行为时,系统能自动推荐到用户访问的页面,提升平台用户下单转化率。即使在用户没有访问平台时,企业通过与用户日常浏览互联网行为轨迹的平台进行联盟合作,在联盟平台推送用户希望购买的商品广告和链接,刺激和引导用户点击购买。即使在用户没有打开电脑时,能够通过信息和邮件的方式,根据用户平常的购买频次和周期,在特定的时间推送到用户手机和电脑。

2.     系统设计建设三步曲

1)    建立平台用户行为的召回模型。

基于如下维度来实现:

·       用户历史行为数据召回

用户历史行为数据召回基于用户历史浏览、点击、购买、评论、分享、收藏、关注等触点,分类推荐在线相关、在线相似、离线相关、离线相似行为;

·       用户偏好召回

基于用户偏好召回是基于用户归类画像与平台多屏互通融合;

(补充:用户画像,即用户信息标签化,就是企业通过收集与分析消费者社会属性、生活习惯、消费行为等主要信息的数据之后,完美地抽象出一个用户的商业全貌作是企业应用大数据技术的基本方式。用户画像为企业提供了足够的信息基础,能够帮助企业快速找到精准用户群体以及用户需求等更为广泛的反馈信息。

用户画像(User Profile),作为大数据的根基,它完美地抽象出一个用户的信息全貌,为进一步精准、快速地分析用户行为习惯、消费习惯等重要信息,提供了足够的数据基础,奠定了大数据时代的基石。)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值