Flink批流一体的理解

Flink通过灵活的执行引擎实现批处理和流处理任务的支持。它以固定缓存块进行网络传输,并允许用户通过设置缓存块超时值来平衡处理延迟和吞吐量。超时值为0时,类似于流处理模型;为无限大时,类似批处理模型。缓存块大小和超时阈值的调整使得Flink能根据需求灵活权衡延迟与性能。默认情况下,元素会缓存直到达到一定大小或等待时间触发发送。
摘要由CSDN通过智能技术生成

在大数据处理领域,批处理任务与流处理任务一般被认为是两种不同的任务一个大数据框架一般会被设计为只能处理其中一种任务

MapReduce只支持批处理任务

Storm只支持流处理任务

Spark Streaming采用micro-batch架构,本质上还是基于Spark批处理对流式数据进行处理

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值