在大数据处理领域,批处理任务与流处理任务一般被认为是两种不同的任务,一个大数据框架一般会被设计为只能处理其中一种任务:
MapReduce只支持批处理任务;
Storm只支持流处理任务;
Spark Streaming采用micro-batch架构,本质上还是基于Spark批处理对流式数据进行处理
Flink通过灵活的执行引擎实现批处理和流处理任务的支持。它以固定缓存块进行网络传输,并允许用户通过设置缓存块超时值来平衡处理延迟和吞吐量。超时值为0时,类似于流处理模型;为无限大时,类似批处理模型。缓存块大小和超时阈值的调整使得Flink能根据需求灵活权衡延迟与性能。默认情况下,元素会缓存直到达到一定大小或等待时间触发发送。
在大数据处理领域,批处理任务与流处理任务一般被认为是两种不同的任务,一个大数据框架一般会被设计为只能处理其中一种任务:
MapReduce只支持批处理任务;
Storm只支持流处理任务;
Spark Streaming采用micro-batch架构,本质上还是基于Spark批处理对流式数据进行处理
752

被折叠的 条评论
为什么被折叠?