基于级联形状回归框架的人脸特征点对齐方法总结

本文总结了基于级联形状回归框架的人脸特征点对齐方法,包括RCPR、SDM、DRMF、LBF和DCNN等。这些方法通过迭代回归找到最优特征点位置,解决人脸检测中的关键问题。张杰博士的博文提供了深入的见解。
摘要由CSDN通过智能技术生成

最近看了一篇中科院计算机技术研究所大神张杰写的一篇博文,想把其中的知识点总结起来方便自己查阅的同时也能方便大家参考。基于级联姿态回归的方法是近几年人脸特征点对齐研究中比较有效的方法。始于2010年的一篇CVPR文章 ,由加州理工学院从事博士后研究的Piotr Dollar 首次提出级联形状回归模型 CascadePose Regression(CPR) 来预测物体的形状。 


   对于人脸特征点的对齐问题,可以把它看成是一个从人脸的表观到人脸形状(由人脸的特征点组成的向量)的回归过程,通过不断的迭代直到回归到最优的特征点位置上。
级联姿态回归的一般框架:
                                                                    S=F(I); 


   S是最后输出的形状,F(·)是总回归函数,I是输入的图像,则级联回归模型可以统一为如下的框架:通过学习多个回归函数{f1,f2….fn}来逼近F(·): 


                                                     S=F(I)=fn(fn-1(…f1(S0,I),I),I);

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值